Skip to main content

The Application of High-Throughput RNAi in Pancreatic Cancer Target Discovery and Drug Development

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer

Abstract

Pancreatic cancer is a particularly lethal malignancy and is highly chemoresistant. There is an urgent need for the identification of new therapeutic targets and more effective treatment options. New approaches, such as high-throughput RNAi, enable the functional evaluation of the casual role of numerous genes in regulating cellular processes, such as cell survival and drug response. In the following chapter, we review RNA interference and its application in high-throughput biology. Specifically, an overview is provided highlighting important experimental aspects in transitioning RNAi to a high-throughput platform. In addition, there is a brief review of current applications of high-throughput RNAi for cancer target identification and drug discovery. Lastly, particular applications of genome-scale RNAi to pancreatic cancer target and treatment identification are discussed. In summary, genome-scale RNAi is proving to be a powerful cellular genomics technology that holds great promise for advancing pharmacologically relevant targets and agents in pancreatic cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  CAS  PubMed  Google Scholar 

  • Bartz SR, Zhang Z, Burchard J et al (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26:9377–9386

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  PubMed  Google Scholar 

  • Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Fabius AW, Mullenders J et al (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2:202–206

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JS (2007) Cancer cell-based genomic and small molecule screens. Adv Cancer Res 96:145–173

    Article  CAS  PubMed  Google Scholar 

  • Ceyhan GO, Bergmann F, Kadihasanoglu M et al (2007) The neurotrophic factor artemin influences the extent of neural damage and growth in chronic pancreatitis. Gut 56:534–544

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Li R, Wheeler T et al (2007) Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum Pathol 38:299–307

    Article  CAS  PubMed  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U et al (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Duxbury MS, Ito H, Benoit E et al (2005) RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin Cancer Res 11:3433–3438

    Article  CAS  PubMed  Google Scholar 

  • Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    Article  CAS  PubMed  Google Scholar 

  • Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet 7:373–384

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Giroux V, Iovanna J, Dagorn JC (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20:1982–1991

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Iorns E, Lord CJ, Ashworth A (2009) Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J 417:361–370

    Article  CAS  PubMed  Google Scholar 

  • Iorns E, Lord CJ, Turner N et al (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–568

    Article  CAS  PubMed  Google Scholar 

  • Iorns E, Turner NC, Elliott R et al (2008) Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13:91–104

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Kimmelman AC, Hezel AF, Aguirre AJ et al (2008) Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci USA 105:19372–19377

    Article  CAS  PubMed  Google Scholar 

  • Konig R, Chiang CY, Tu BP et al (2007) A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods 4:847–849

    Article  PubMed  Google Scholar 

  • Kuuselo R, Savinainen K, Azorsa DO et al (2007) Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 67:1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Lord CJ, McDonald S, Swift S et al (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–2019

    Article  CAS  Google Scholar 

  • Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  • MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    Article  CAS  PubMed  Google Scholar 

  • Misquitta L, Paterson BM (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci USA 96:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Lappe S, Woods KW, Li Q et al (2006) RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25:1340–1348

    Article  CAS  PubMed  Google Scholar 

  • Morgan MA, Parsels LA, Parsels JD et al (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65:6835–6842

    Article  CAS  PubMed  Google Scholar 

  • Ngo VN, Davis RE, Lamy L et al (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Sachidanandam R et al (2004a) Short hairpin activated gene silencing in mammalian cells. Methods Mol Biol 265:85–100

    CAS  Google Scholar 

  • Paddison PJ, Silva JM, Conklin DS et al (2004b) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  CAS  Google Scholar 

  • Perrimon N, Friedman A, Mathey-Prevot B et al (2007) Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 12:28–33

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Schlabach MR, Luo J, Solimini NL et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Lord CJ, Iorns E et al (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27:1368–1377

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Han H, Von Hoff DD (2006) Identification of an agent selectively targeting DPC4 (deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells. Cancer Res 66:9722–9730

    Article  CAS  PubMed  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yin, H., Kiefer, J., Kassner, M., Tang, N., Mousses, S. (2010). The Application of High-Throughput RNAi in Pancreatic Cancer Target Discovery and Drug Development. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_8

Download citation

Publish with us

Policies and ethics