Skip to main content

A New Preclinical Paradigm for Pancreas Cancer

  • Chapter
  • First Online:
Book cover Drug Discovery in Pancreatic Cancer

Abstract

Pancreas cancer confounds patient and physician alike. With an almost identical annual incidence and mortality, the disease has heretofore thwarted attempts to cure and even contain it. The approach to the patient with pancreas cancer is the same as for any cancer: detect it early, diagnose it accurately and eradicate it through a combination of surgery and chemical and radiotherapies. However, cancer of this organ eludes early detection, runs the risk of significant collateral injury when attempting to biopsy it for diagnosis, and resists all current forms of conventional chemotherapy and radiation. Moreover, the disease is as difficult to study in patients as it is to treat. Although classical experimental model systems have yielded significant information on genetic mutations of interest, they have not proved as useful in screening for drugs likely to be effective in patients. Mammalian model systems that faithfully mimic the full spectrum of the human disease from inception to invasion are needed. This chapter describes an integrated translational approach to developing and testing early detection, molecular diagnostic, chemopreventive and therapeutic strategies using state-of-the-art genetically engineered mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adsay NV (2005) Pathological classification of cystic neoplasms of the pancreas. In: Von Hoff DD, Evans DB, Hruban RH (eds) Pancreatic Cancer. Jones and Bartlett Publishers, Sudbury, pp 716–756

    Google Scholar 

  • Aguirre AJ, Bardeesy N, Sinha M et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  CAS  PubMed  Google Scholar 

  • Apte MV, Haber PS, Applegate TL et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133

    Article  CAS  PubMed  Google Scholar 

  • Apte MV, Park S, Phillips PA et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29:179–187

    Article  CAS  PubMed  Google Scholar 

  • Bachem MG, Schneider E, Gross H et al (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, Aguirre AJ, Chu GC et al (2006a) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103:5947–5952

    Article  CAS  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH et al (2006b) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146

    Article  CAS  Google Scholar 

  • Berlin JD (2007) Adjuvant therapy for pancreatic cancer: to treat or not to treat? Oncology (Williston Park) 21:712–718; discussion 720, 725–716, 730

    Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  CAS  PubMed  Google Scholar 

  • Burris HA III, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    CAS  PubMed  Google Scholar 

  • Clark CE, Hingorani SR, Mick R et al (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527

    Article  CAS  PubMed  Google Scholar 

  • DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68:8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3:417–429

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  CAS  PubMed  Google Scholar 

  • Faca VM, Song KS, Wang H et al (2008) A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 5:e123

    Google Scholar 

  • Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416

    Article  CAS  PubMed  Google Scholar 

  • Funahashi H, Satake M, Dawson D et al (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67:7068–7071

    Article  CAS  PubMed  Google Scholar 

  • Grippo PJ, Sandgren EP (2005) Modeling pancreatic cancer in animals to address specific hypotheses. Methods Mol Med 103:217–243

    CAS  PubMed  Google Scholar 

  • Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Rubin K, Pietras K et al (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  PubMed  Google Scholar 

  • Hertel LW, Boder GB, Kroin JS et al (1990) Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine). Cancer Res 50:4417–4422

    CAS  PubMed  Google Scholar 

  • Hingorani SR (2005) Modeling pancreatic ductal adenocarcinoma in the mouse. In: Gress TM, Neoptolemos JP, Lemoine NR, Real FX (eds) Exocrine pancreas cancer. Felsenstein CCCP Publishing, Hannover, pp 152–171

    Google Scholar 

  • Hingorani SR (2007) Location, location, location: precursors and prognoses for pancreatic cancer. Gastroenterology 133:345

    Article  PubMed  Google Scholar 

  • Hingorani SR (2008) From inception to invasion: modeling pathways to pancreatic cancer. In: Lowy AM, Leach SD, Philip PA (eds) Pancreatic Cancer. Springer, US, pp 159–179

    Chapter  Google Scholar 

  • Hingorani SR, Tuveson DA (2003) Targeting oncogene dependence and resistance. Cancer Cell 3:414–417

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH (2006) Tumors of the pancreas. In: Hruban RH, Klimstra DS, Pitman MB (eds) Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28:977–987

    Article  PubMed  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J et al (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106

    Article  CAS  PubMed  Google Scholar 

  • Huxham LA, Kyle AH, Baker JH et al (2004) Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res 64:6537–6541

    Article  CAS  PubMed  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE et al (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    Article  CAS  PubMed  Google Scholar 

  • Ikeda N, Adachi M, Taki T et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79:1553–1563

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Hingorani SR (2007) Targets, trials, and travails in pancreas cancer. J Natl Compr Canc Netw 5:1042–1053

    CAS  PubMed  Google Scholar 

  • Izeradjene K, Combs C, Best M et al (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  CAS  PubMed  Google Scholar 

  • Kindler HL, Niedzwiecki D, Hollis D, Oraefo E, Schrag D, Hurwitz H, McLeod HL, Mulcahy MF, Schilsky RL, Goldberg RM (2007) A double-blind, placebo-controlled randomized phase III trial of gemcitabine plus bevacizumab versus gemcitabine plus placebo in patients with advanced pancreatic cancer: a preliminary analysis of Cancer and Leukemia Group B (CALGB) 80303 (Abstract). American Society of Clinical Oncology Gastointestinal Cancers Symposium, 19–21. Orlando, FL

    Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  • Lankelma J, Dekker H, Luque FR et al (1999) Doxorubicin gradients in human breast cancer. Clin Cancer Res 5:1703–1707

    CAS  PubMed  Google Scholar 

  • Leach SD (2004) Mouse models of pancreatic cancer: the fur is finally flying! Cancer Cell 5:7–11

    Article  CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Maitra A, Fukushima N, Takaori K et al (2005) Precursors to invasive pancreatic cancer. Adv Anat Pathol 12:81–91

    Article  PubMed  Google Scholar 

  • Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy MF (2007) Adjuvant therapy for pancreas cancer: advances and controversies. Semin Oncol 34:321–326

    Article  CAS  PubMed  Google Scholar 

  • Omary MB, Lugea A, Lowe AW et al (2007) The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 117:50–59

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  Google Scholar 

  • Radisky D, Hagios C and Bissell MJ (2001) Tumors are unique organs defined by abnormal signaling and context. Semin Cancer Biol 11:87–95

    Article  CAS  PubMed  Google Scholar 

  • Roberts TG Jr, Goulart BH, Squitieri L et al (2004) Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. JAMA 292:2130–2140

    Article  CAS  PubMed  Google Scholar 

  • Rustgi AK (2006) The molecular pathogenesis of pancreatic cancer: clarifying a complex circuitry. Genes Dev 20:3049–3053

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Chari S, Adsay V et al (2006) International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 6:17–32

    Article  PubMed  Google Scholar 

  • Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62:1117–1133

    CAS  PubMed  Google Scholar 

  • Tuveson DA, Hingorani SR (2005) Ductal pancreatic cancer in humans and mice. Cold Spring Harb Symp Quant Biol 70:65–72

    Article  CAS  PubMed  Google Scholar 

  • Von Hoff DD, Hruban RH, Evans DB (2005) Pancreatic cancer. Jones and Bartlett, Sudbury, MA

    Google Scholar 

  • Walter K, Omura N, Hong SM et al (2008) Pancreatic cancer associated fibroblasts display normal allelotypes. Cancer Biol Ther 7:882–888

    Article  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  • Yeh JJ, Der CJ (2007) Targeting signal transduction in pancreatic cancer treatment. Expert Opin Ther Targets 11:673–694

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil R. Hingorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hingorani, S. (2010). A New Preclinical Paradigm for Pancreas Cancer. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_4

Download citation

Publish with us

Policies and ethics