Skip to main content

Fluorescent Metastatic Mouse Models of Pancreatic Cancer for Drug Discovery

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer

Abstract

Here we describe our cumulative experience with the development and preclinical application of imageable, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of green fluorescent protein (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time quantitative imaging of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor–host interaction between the pancreatic cancer cells and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate metastatic human pancreatic cancer and novel therapeutic strategies directed against it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amoh Y, Li L, Tsuji K et al (2006a) Dual-color imaging of nascent blood vessels vascularizing pancreatic cancer in an orthotopic model demonstrates antiangiogenesis efficacy of gemcitabine. J Surg Res 132:164–169

    Article  CAS  Google Scholar 

  • Amoh Y, Nagakura C, Maitra A et al (2006b) Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Res 26:3237–3242

    CAS  Google Scholar 

  • An Z, Wang X, Kubota T et al (1996) A clinical nude mouse metastatic model for highly malignant human pancreatic cancer. Anticancer Res 16:627–631

    CAS  PubMed  Google Scholar 

  • Astoul P, Colt HG, Wang X et al (1994) A “patient-like” nude mouse model of parietal pleural human lung adenocarcinoma. Anticancer Res 14:85–91

    CAS  PubMed  Google Scholar 

  • Bouvet M, Gamagami RA, Gilpin EA et al (2000a) Factors influencing survival after resection for periampullary neoplasms. Am J Surg 180:13–17

    Article  CAS  Google Scholar 

  • Bouvet M, Yang M, Nardin S et al (2000b) Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis 18:213–218

    Article  CAS  Google Scholar 

  • Bouvet M, Binmoeller KF, Moossa AR (2001) Diagnosis of adenocarcinoma of the pancreas. In: Cameron JL (ed) American cancer society atlas of clinical oncology: pancreatic cancer, Hamilton, Ontario, Canada, BC Decker, pp 67–86

    Google Scholar 

  • Bouvet M, Wang J, Nardin SR et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62:1534–1540

    CAS  PubMed  Google Scholar 

  • Bouvet M, Spernyak J, Katz MH et al (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65:9829–9833

    Article  CAS  PubMed  Google Scholar 

  • Bruns CJ, Harbison MT, Kuniyasu H et al (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1:50–62

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, MacDonald IC, Schmidt EE et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Fu J, Tsukamoto A et al (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609

    Article  CAS  PubMed  Google Scholar 

  • Chishima T, Miyagi Y, Li L et al (1997a) Use of histoculture and green fluorescent protein to visualize tumor cell host interaction [letter]. In Vitro Cell Dev Biol Anim 33:745–747

    Article  CAS  Google Scholar 

  • Chishima T, Miyagi Y, Wang X et al (1997b) Metastatic patterns of lung cancer visualized live and in process by green fluorescence protein expression. Clin Exp Metastasis 15:547–552

    Article  CAS  Google Scholar 

  • Chishima T, Miyagi Y, Wang X et al (1997c) Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17:2377–2384

    CAS  Google Scholar 

  • Chishima T, Miyagi Y, Wang X et al (1997d) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047

    CAS  Google Scholar 

  • Chishima T, Yang M, Miyagi Y et al (1997e) Governing step of metastasis visualized in vitro. Proc Natl Acad Sci USA 94:11573–11576

    Article  CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY) 13:151–154

    Article  CAS  Google Scholar 

  • Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50:6130–6138

    CAS  PubMed  Google Scholar 

  • Fu X, Guadagni F, Hoffman RM (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 89:5645–5649

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Yuan F, Monsky WL et al (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688

    CAS  PubMed  Google Scholar 

  • Furukawa T, Kubota T, Watanabe M et al (1993) A novel patient-like treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 53:3070–3072

    CAS  PubMed  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM, Yang M (2006) Whole-body imaging with fluorescent proteins. Nat Protoc 1:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Katz MH, Bouvet M, Takimoto S et al (2003a) Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Res 63:5521–5525

    CAS  Google Scholar 

  • Katz MH, Spivack DE, Takimoto S et al (2003b) Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Ann Surg Oncol 10:762–772

    Article  Google Scholar 

  • Katz MH, Takimoto S, Spivack D et al (2003c) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160

    Article  CAS  Google Scholar 

  • Katz MH, Bouvet M, Al-Refaie W et al (2004a) Non-pancreatic periampullary adenocarcinomas: an explanation for favorable prognosis. Hepatogastroenterology 51:842–846

    Google Scholar 

  • Katz MH, Bouvet M, Takimoto S et al (2004b) Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Res 64:1828–1833

    Article  CAS  Google Scholar 

  • Katz MH, Takimoto S, Spivack D et al (2004c) An imageable highly metastatic orthotopic red fluorescent protein model of pancreatic cancer. Clin Exp Metastasis 21:7–12

    Article  CAS  Google Scholar 

  • Katz MH, Savides TJ, Moossa AR et al (2005) An evidence-based approach to the diagnosis and staging of pancreatic cancer. Pancreatology 5:576–590

    Article  PubMed  Google Scholar 

  • Kiguchi K, Kubota T, Aoki D et al (1998) A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis 16:751–756

    Article  CAS  PubMed  Google Scholar 

  • Kyriazis AP, DiPersio L, Michael GJ et al (1978) Growth patterns and metastatic behavior of human tumors growing in athymic mice. Cancer Res 38:3186–3190

    CAS  PubMed  Google Scholar 

  • Lee NC, Bouvet M, Nardin S et al (2000) Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model. Clin Exp Metastasis 18:379–384

    Article  CAS  PubMed  Google Scholar 

  • Lin WC, Pretlow TP, Pretlow TG, 2nd et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817

    CAS  PubMed  Google Scholar 

  • Marincola FM, Drucker BJ, Siao DY et al (1989) The nude mouse as a model for the study of human pancreatic cancer. J Surg Res 47:520–529

    Article  CAS  PubMed  Google Scholar 

  • Moossa AR, Bouvet M, Gamagami R (2002) The pancreas. In: Cuschieri A, Steele RJC, Moossa AR (ed) Essential surgical practice, vol 2. Arnold Publishing, London, pp 477–525

    Google Scholar 

  • Morikawa K, Walker SM, Nakajima M et al (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871

    CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green–fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Zhao M, Li L et al (2002) High efficiency genetic modification of hair follicles and growing hair shafts. Proc Natl Acad Sci USA 99:13120–13124

    Article  CAS  PubMed  Google Scholar 

  • Sweeney TJ, Mailander V, Tucker AA et al (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049

    Article  CAS  PubMed  Google Scholar 

  • Tan MH, Chu TM (1985) Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biol 6:89–98

    CAS  PubMed  Google Scholar 

  • Tomikawa M, Kubota T, Matsuzaki SW et al (1997) Mitomycin C and cisplatin increase survival in a human pancreatic cancer metastatic model. Anticancer Res 17:3623–3625

    CAS  PubMed  Google Scholar 

  • Tsuji K, Yang M, Jiang P et al (2006) Common bile duct injection as a novel method for establishing red fluorescent protein (RFP)-expressing human pancreatic cancer in nude mice. JOP 7:193–199

    PubMed  Google Scholar 

  • US Patents 5, 284 and 5,569,812 Reissue RE:39,337

    Google Scholar 

  • Vezeridis MP, Doremus CM, Tibbetts LM et al (1989) Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J Surg Oncol 40:261–265

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Hasegawa S, Jiang P et al (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221

    CAS  PubMed  Google Scholar 

  • Yang M, Jiang P, An Z et al (1999a) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5:3549–3559

    CAS  Google Scholar 

  • Yang M, Jiang P, Sun FX et al (1999b) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786

    CAS  Google Scholar 

  • Yang M, Baranov E, Jiang P et al (2000a) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211

    Article  CAS  Google Scholar 

  • Yang M, Baranov E, Moossa AR et al (2000b) Visualizing gene expression by whole-body fluorescence imaging [In Process Citation]. Proc Natl Acad Sci USA 97:12278–12282

    Article  CAS  Google Scholar 

  • Yang M, Baranov E, Li XM et al (2001) Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98:2616–2621

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Li L, Jiang P et al (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100:14259–14262

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Jiang P, Hoffman RM (2007) Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res 67:5195–5200

    Article  CAS  PubMed  Google Scholar 

  • Zolotukhin S, Potter M, Hauswirth WW et al (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bouvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bouvet, M., Hoffman, R. (2010). Fluorescent Metastatic Mouse Models of Pancreatic Cancer for Drug Discovery. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_3

Download citation

Publish with us

Policies and ethics