Skip to main content

Tissue Microarray Applications in Drug Discovery for Pancreatic Cancer

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer

Abstract

The rising incidence of pancreatic cancer combined with limited responses to chemotherapy highlights the need for improved molecular characterization in this highly lethal cancer. The discovery and validation of novel biomarkers are urgently needed to improve early detection and thereby improve survival outcomes. The introduction and widespread application of tissue microarrays (TMAs) over the past decade provide a valuable tool for validation of abundance and cellular localization of expressed proteins and RNA transcript levels contextually within the complex tissue morphology of pancreatic cancer. The TMA format offers a standardized platform to optimize and validate newly identified biomarkers and drug targets in pancreatic cancer research to patient tumor samples to provide critical links in advancing cancer research findings to the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott RT, Tripp S, Perkins SL et al (2003) Analysis of the PI-3-Kinase-PTEN-AKT pathway in human lymphoma and leukemia using a cell line microarray. Mod Pathol 16:607–612

    Article  PubMed  Google Scholar 

  • Andersen CL, Hostetter G, Grigoryan A et al (2001) Improved protocol for fluorescence in situ hybridization on tissue microarrays. Cytometry 45:83–86

    Article  CAS  PubMed  Google Scholar 

  • Balagurunathan Y, Morse DL, Hostetter G et al (2008) Gene expression profiling-based identification of cell-surface targets for developing multimeric ligands in pancreatic cancer. Mol Cancer Ther 7:3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Battifora H (1986) The multitumor (sausage) block: novel method for immunohistochemistry antibody testing. Lab Invest 55:244–248

    CAS  PubMed  Google Scholar 

  • Bubendorf L, Kononen J, Koivisto P et al (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59:803–806

    CAS  PubMed  Google Scholar 

  • Cao D, Zhang Q, Wu L et al (2007) Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol 20:570–578

    Article  CAS  PubMed  Google Scholar 

  • Charpin C, Dales JP, Garcia S et al (2004) Tumor neoangiogenesis by CD31 and CD105 expression evaluation in breast carcinoma tissue microarrays. Clin Cancer Res 10:5815–5819

    Article  CAS  PubMed  Google Scholar 

  • Chiesa-Vottero AG, Rybicki LA, Prayson RA (2003) Comparison of proliferation indices in glioblastoma multiforme by whole tissue section vs. tissue microarray. Am J Clin Pathol 120:902–908

    Article  PubMed  Google Scholar 

  • Chin SF, Daigo Y, Huang HE et al (2003) A simple and reliable pretreatment protocol facilitates fluorescent in situ hybridisation on tissue microarrays of paraffin wax embedded tumor samples. Mol Pathol 56:275–279

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, McKusick VA (2001) Implications of the Human Genome Project for medical science. JAMA 285:540–544

    Article  CAS  PubMed  Google Scholar 

  • De Marzo AM, Fedor HH, Gage WR et al (2002) Inadequate formalin fixation decreases reliability of p27 immunohistochemical staining: probing optimal fixation time using high-density tissue microarrays. Hum Pathol 33:756–760

    Article  CAS  PubMed  Google Scholar 

  • DeRisi J, Penland L, Brown PO et al (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 14:457–460

    Article  CAS  PubMed  Google Scholar 

  • DiVito KA, Charette LA, Rimm DL et al (2004) Long-term preservation of antigenicity on tissue microarrays. Lab Invest 84:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Duggan DJ, Bittner M, Chen Y et al (1999) Expression profiling using cDNA microarrays. Nat Genet 21(1 Suppl):10–14

    Article  CAS  PubMed  Google Scholar 

  • Fejzo MS, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159:1645–1650

    CAS  Google Scholar 

  • Fergenbaum JH, Garcia-Closas M, Hewitt SM et al (2004) Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer Epidemiol Biomarkers Prev 13:667–672

    CAS  PubMed  Google Scholar 

  • Frantz GD, Pham TQ, Peale FV et al (2001) Detection of novel gene expression in paraffin-embedded tissues by isotopic in situ hybridization in tissue microarrays. J Pathol 195:87–96

    Article  CAS  PubMed  Google Scholar 

  • Garcia JF, Camacho FI, Morente M et al (2003) Spanish Hodgkin Lymphoma Study Group. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 101:681–689

    Article  CAS  PubMed  Google Scholar 

  • Gulmann C, Butler D, Kay E Grace et al (2003) Biopsy of a biopsy: validation of immunoprofiling in gastric cancer biopsy tissue microarrays. Histopathology 42:70–76

    Article  CAS  PubMed  Google Scholar 

  • Hacia JG, Edgemon K, Fang N et al (2000) Oligonucleotide microarray based detection of repetitive sequence changes. Hum Mutat 16:354–363

    Article  CAS  PubMed  Google Scholar 

  • Han C, Lee M, Tzeng S et al (2008) Nuclear receptor interaction protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res 27:25

    Article  PubMed  Google Scholar 

  • Hardisson D, Moreno-Bueno G, Sanchez L et al (2003) Tissue microarray immunohistochemical expression analysis of mismatch repair (hMLH1 and hMSH2 genes) in endometrial carcinoma and atypical endometrial hyperplasia: relationship with microsatellite instability.Mod Pathol 16:1148–1158

    Article  PubMed  Google Scholar 

  • Henshall S (2003) Tissue microarrays. J Mammary Gland Biol Neoplasia 8:347–358

    Article  PubMed  Google Scholar 

  • Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81(10):1331–1338

    CAS  PubMed  Google Scholar 

  • Hoos A, Urist MJ, Stojadinovic A et al (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251

    CAS  PubMed  Google Scholar 

  • Hsieh HL, Schafer BW, Sasaki N et al (2003) Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun 307:375–381

    Article  CAS  PubMed  Google Scholar 

  • Hsu FD, Neilson TO, Alkushi A et al (2002) Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry. Mod Pathol 15:1374–1380

    Article  PubMed  Google Scholar 

  • Hu YC, Komorowski RA, Graewin S et al (2003) Thymidylatesynthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res 9:4165–4171

    CAS  PubMed  Google Scholar 

  • Khorana AA, Ahrendt SA, Ryan CK et al (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13:2870–2875

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Hostetter G, Sauter G et al (2002) Construction of tissue microarrays. David Bowtell and Joe Sambrook (Eds.) In: DNA Microarrays: A Molecular Cloning Manual, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Li H, Sun Y, Kong QY et al (2003) Combination of nucleic acid and protein isolation with tissue array construction: using defined histologic regions in single frozen tissue blocks for multiple research purposes. Int J Mol Med 12:299–304

    PubMed  Google Scholar 

  • Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16:902–912

    Article  PubMed  Google Scholar 

  • Merseburger AS, Kuczyk MA, Serth J et al (2003) Limitations of tissue microarrays in the evaluation of focal alterations of bcl-2 and p53 in whole mount derived prostate tissues. Oncol Rep 10:223–228

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Airley R, Foster CS et al (2004) Post-genomic applications of tissue microarrays: basic research, prognostic oncology, clinical genomics and drug discovery. Histol Histopathol 19:325–335

    CAS  PubMed  Google Scholar 

  • Moskaluk CA, Stoler MH (2002) Agarose mold embedding of cultured cells for tissue microarrays. Diagn Mol Pathol 11:234–238

    Article  PubMed  Google Scholar 

  • Mousses S, Bubendorf L, Wagner U et al (2002) Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62:1256–1260

    CAS  PubMed  Google Scholar 

  • Mucci N, Akdas G, Manley S et al (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 31:406–414

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka S, Chen ST, Gwadry FG et al (2003) Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res 63:5243–5250

    CAS  PubMed  Google Scholar 

  • Nocito A, Bubendorf L, Tinner ME et al (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194:349–357

    Article  CAS  PubMed  Google Scholar 

  • O’Leary TJ (2001) Standardization in immunohistochemistry. Appl Immunohistochem Mol Morphol 9:3–8

    Article  PubMed  Google Scholar 

  • Parker RL, Gilks CB et al (2002) Assessment of interlaboratory variation in immunohistochemical determination of estrogen receptor status using a breast cancer tissue microarray. Am J Clin Pathol 117:723–728

    Article  PubMed  Google Scholar 

  • Rimm D, Camp R, Charette L et al (2001) Tissue microarray: a new technology of amplification of tissue resources. Cancer J 7:24–31

    CAS  PubMed  Google Scholar 

  • Rubin MA, Dunn R et al (2002) Tissue microarray sampling strategy for prostate cancer biomarkers analysis. Am J Surg Pathol 26:312–319

    Article  PubMed  Google Scholar 

  • Sauter G, Simon R, Hillan K (2003) Tissue microarrays in drug discovery. Nat Rev Drug Discov 2:962–972

    Article  CAS  PubMed  Google Scholar 

  • Saxby AJ, Nielsen A, Scarlett CJ et al (2005) Assessment of Her-2 status in pancreatic adenocarcinoma. Am J Surg Pathol 29:1125–1134

    Article  PubMed  Google Scholar 

  • Schraml P, Kononen J, Bubendorf L et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975

    CAS  PubMed  Google Scholar 

  • Simon R, Mirlacher M, Sauter G (2004) Tissue microarrays. Biotechniques 36:98–105

    CAS  PubMed  Google Scholar 

  • Skacel M, Skilton B, Pettay JD et al (2002) Tissue microarrays: a powerful tool for high-throughput analysis of clinical specimens: a review of the method with validation data. Appl Immunohistochem Mol Morphol 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Sompuram SR, Kodela V, Zhang K et al (2002) A novel quality control slide for quantitative immunohistochemistry testing. J Histochem Cytochem 50:1425–1434

    CAS  PubMed  Google Scholar 

  • Srivastava M, Bubendorf L, Srikantan V et al (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci U S A 98:4575–4580

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Geraci M, Gao B et al (2002) Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer Res 62:3971–3979

    CAS  PubMed  Google Scholar 

  • Swierczynski SL, Maitra A, Nirban AS et al (2004) Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Hum Pathol 35:357–366

    Article  CAS  PubMed  Google Scholar 

  • Warford A, Howat W, McCafferty J (2004) Expression profiling by high-throughput immunohistochemistry. J Immunol Methods 290:81–92

    Article  CAS  PubMed  Google Scholar 

  • Welsh JB, Sapinoso LM, Kern SG et al (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A 100:3410–3415

    Article  CAS  PubMed  Google Scholar 

  • Wolfsberg TG, Wetterstrand KA, Guyer MS et al (2002) A user's guide to the human genome. Nat Genet 32(Suppl):1–79

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galen Hostetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Watanabe, A., Hostetter, G. (2010). Tissue Microarray Applications in Drug Discovery for Pancreatic Cancer. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_11

Download citation

Publish with us

Policies and ethics