Skip to main content

Energy Analysis of Organic and Conventional Agricultural Systems

  • Chapter
Organic Crop Production – Ambitions and Limitations

Abstract

Energy parameters of a Swedish long-term field experiment comparing organic and conventional agricultural systems were evaluated. There is great potential for misinterpretation of system comparisons as a result of choice of data and how energy data are expressed. For example, reported yields based on single crops and not the whole rotation can result in significantly different interpretations. Energy use per unit yield was lower in organic crop and animal production than in the corresponding conventional system, as previously found in other studies. This is due to the exclusion of N fertiliser, the largest energy input in conventional cropping systems. Energy use per unit yield expresses system efficiency, but the term is insufficient to evaluate the energy characteristics of agricultural systems. Calculation of the most important energy component, net energy production per unit area, showed that conventional systems produced far more energy per hectare than organic systems. The energy productivity (output/input ratio), i.e. the energy return on inputs, was at least six in both types of agriculture, revealing the highly positive energy balance of crop production in general. Lower yields in the organic systems, and consequently lower energy production per unit area, mean that more land is required to produce the same amount of energy. This greater land requirement in organic production must be considered in energy balances. When the same area of land is available for organic and conventional crop production, the latter allows for complementary bio-energy production and can produce all the energy required for farming, such as fuels, N fertilisers, etc., in the form of ethanol. In a complete energy balance, options such as combustion, gasification or use as fodder of protein residues from ethanol production must also be taken into account. There is a common belief that the high fossil fuel requirement in N fertiliser production is non-sustainable. This is a misconception, since the use of N fertilisers provides a net energy gain. If N fertilisers were to be completely replaced by biological N2 fixation, net energy production would be significantly lower. In addition, N fertiliser production can be based on renewable energy sources such as bio-fuels produced by gasification. Conventional crop production is thus energetically fully sustainable. Energy analyses of agricultural systems presented in this chapter illustrate that published data may require recalculation in relation to the background, prevailing trends and boundary conditions, and subsequent re-interpretation. New perspectives on energy use must also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrén, O., Kätterer, T., and Kirchmann, H., 2008, How will conversion to organic cereal production affect carbon stocks in Swedish agricultural soils? in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Balwinder, P.S., and Fluck, R.C., 1993, Energy productivity of a production system: Analysis and measurement, Agric. Syst. 43: 415–437.

    Article  Google Scholar 

  • Baumann, H., and Tillman, A.-M., 2004, The Hitch-Hiker’s Guide to LCA, Studentlitteratur, Lund, Sweden, 543p.

    Google Scholar 

  • Bergström, L., Bowman, B.T., and Sims, J.T., 2005, Definition of sustainable and unsustainable issues in nutrient management of modern agriculture, Soil Use Manage. 21: 76–81.

    Google Scholar 

  • Bertilsson, G., 1993, Environmental consequences of different farming systems using good agricultural practices, International Fertiliser Society, Proceedings No. 332, York, UK.

    Google Scholar 

  • Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H., 2004a, Environmental impact assessment of agricultural production systems using the Life Cycle Assessment (LCA) methodology. I. Theoretical concept of a LCA method tailored to crop production, Eur. J. Agron. 20: 247–264.

    Article  Google Scholar 

  • Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H., 2004b, Environmental impact assessment of agricultural production systems using the Life Cycle Assessment (LCA) methodology. II. The application to N fertiliser use in winter wheat production systems, Eur. J. Agron. 20: 265–279.

    Article  Google Scholar 

  • Bonny, S., 1993, Is agriculture using more and more energy? A French case study, Agric. Syst. 43: 51–66.

    Article  Google Scholar 

  • Carlgren, K., and Mattsson, L., 2001, Swedish soil fertility experiments, Acta Agric. Scand. (Section B) 51: 29–78.

    Google Scholar 

  • Casey, J.W., and Holden, N.M., 2006, Greenhouse gas emissions from conventional agri-environmental scheme and organic Irish suckler-beef units, J. Environ. Qual. 35: 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Cederberg, C., and Mattsson, B., 2000, Life cycle assessment of milk production – a comparison of conventional and organic farming, J. Clean. Prod. 8: 49–60.

    Article  Google Scholar 

  • Cleveland, C.J., 1995, The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990, Agric. Ecosyst. Environ. 55: 111–121.

    Article  Google Scholar 

  • Connor, D., and Mingues, I., 2006, Looking at biofuels and bioenergy (Letters), Science 312: 1743.

    PubMed  CAS  Google Scholar 

  • Corré, W., Schröder, J., and Verhagen, J., 2003, Energy use in conventional and organic farming systems, Proceedings No. 511, International Fertiliser Society, York, UK.

    Google Scholar 

  • Dalgaard, T., Halberg, N., and Porter, J., 2001, A model for fossil energy use in Danish agriculture used to compare organic and conventional farming, Agric. Ecosyst. Environ. 87: 51–65.

    Article  Google Scholar 

  • Eckert, H., Breitschuh, G., and Sauerbeck, D., 1999, Kriterien umweltverträglicher Landbewirtschaftung (KUL) – ein Verfahren zur ökologischen Bewertung von Landwirtschaftsbetrieben, Agribiol. Res. 52: 57–76 (In German).

    Google Scholar 

  • Finkbeiner, M., Inaba, A., Tan, R.B.H., Christiansen, K., and Klüppel, H.-G., 2006, The new international standards for life cycle assessment: ISO 14040 and ISO 14044, Int. J. LCA 11: 80–85.

    Google Scholar 

  • Fluck, R.C., 1992, Energy in World Agriculture, Elsevier, Amsterdam, The Netherlands, 367p.

    Google Scholar 

  • Hirst, E., 1974, Food-related energy requirements, Science 184: 134–138.

    Article  PubMed  Google Scholar 

  • Horne, R.E., Mortimer, N.D., and Elsayed, M.A., 2003, Energy and carbon balances of biofuels production: Biodiesel and bioethanol, Proceedings No. 510. International Fertiliser Society, York, UK.

    Google Scholar 

  • Hülsbergen, K.-J., and Kalk, W.-D., 2001, Energy balances in different agricultural systems – can they be improved? Proceedings No. 476, International Fertiliser Society, York, UK.

    Google Scholar 

  • IFA, 2006, International Fertiliser Association, Statistics, www.fertiliser.org/ifa/statistics/indicators/ind_reserves.asp, Paris. Assessed July 2006.

    Google Scholar 

  • ISO (International Organization for Standardization), 1997, Environmental management – life cycle assessment – Principles and framework, International Standard ISO 14040, ISO, Geneva, Switzerland.

    Google Scholar 

  • Ivarson, J., and Gunnarsson, A., 2001, Försök med konventionella och ekologiska odlingsformer 1987–1998, Meddelande från Södra Jordbruksförsöksdistriktet. Nr.53, Swedish University of Agricultural Sciences, Uppsala, Swden, SJFD-M-53-SE, 165p (In Swedish).

    Google Scholar 

  • Jenssen, T.K., and Kongshaug, G., 2003, Energy consumption and greenhouse gas emissions in fertiliser production, Proceedings No. 509, International Fertiliser Society, York, UK.

    Google Scholar 

  • Jenssen, T.K., 2004, N2O emissions trading – implications for the European fertiliser industry, Proceedings No. 538, International Fertiliser Society, York, UK.

    Google Scholar 

  • Jørgensen, U., Dalgaard, T., and Kristensen, E.S., 2005, Biomass energy in organic farming – the potential role of short rotation coppice, Biomass Bioenergy 28: 237–248.

    Google Scholar 

  • Kirchmann, H., Bergström, L., Kätterer, T., Andrén, O., and Andersson, R., 2008, Can organic crop production feed the world? in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Lefroy, E., and Rydberg, T., 2003, Emergy evaluation of three cropping systems in southwestern Australia, Ecol. Model. 161: 195–211.

    Article  Google Scholar 

  • Mäder, P., Fliesbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002, Soil fertility and biodiversity in organic farming, Science 296: 1694–1697.

    Article  PubMed  Google Scholar 

  • Martin, J.F, Diemont, S.A.W., Powell, E., Stanton, M., and Levy-Tacher, S., 2006, Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management, Agric. Ecosyst. Environ. 115: 128–140.

    Article  Google Scholar 

  • Odum, H.T., 1996, Environmental Accounting: Emergy and Environmental Decision Making, John Wiley and Sons, New York, USA, 370p.

    Google Scholar 

  • Pimentel, D., Hurd, L.E., Belloti, A.C., Forster, M.J., Oka, I.N., Sholes, O.O., and Whitman, R.J., 1973, Food production and the energy crisis, Science 182: 443–449.

    Article  PubMed  Google Scholar 

  • Pimentel, D., 2006, Impacts of organic farming on the efficiency of energy use in agriculture, An organic center state of science review. www.organic-center.org/reportfiles/energy ssr.pdf. Assessed October 2006.

    Google Scholar 

  • Ramirez, C.A., 2006, Monitoring energy efficiency in the food industry. SenterNovem, www.now.nl. Accessed June 2006.

    Google Scholar 

  • Ratke, G.-W., Körschens, M., and Diepenbrock, W., 2002, Substance and energy balances in the “static fertilization experiment Bad Lauchstädt”, Archiv für Acker- und Pflanzenbau und Bodenkunde 48: 423–433.

    Google Scholar 

  • Refsgaard, K., Halberg, N., and Kristensen, E.S., 1998, Energy utilization in crop and dairy production in organic and conventional livestock production systems, Agric. Syst. 57: 599–630.

    Article  Google Scholar 

  • Rydberg, T., and Jansén, J., 2002, Comparison of horse and tractor using emergy analysis, Ecol. Model. 19: 13–28.

    Google Scholar 

  • Törner, L., 1999, Energibalans i ekologisk och anpassad-intgrerad växtodling, Internal Report, Odling i Balans, Sweden (In Swedish).

    Google Scholar 

  • Uhlin, H.-E., 1998, Why energy productivity is increasing: an I-O analysis of Swedish agriculture, Agric. Ecosyst. Environ. 56: 443–465.

    Google Scholar 

  • Uhlin, H.-E., 1999, Energy productivity of technological agriculture-lessons from the transition of Swedish agriculture, Agric. Ecosyst. Environ. 73: 63–81.

    Article  Google Scholar 

  • Van den Broek, R., Treffers, D-J., Meeusen, M., van Wijk, A., Nieuwlaar, E., and Turkenburg, W., 2001, Green energy or organic food. A life cycle analysis comparing two uses of set aside land, J. Indust. Ecol. 5: 65–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bertilsson, G., Kirchmann, H., Bergström, L. (2009). Energy Analysis of Organic and Conventional Agricultural Systems. In: Kirchmann, H., Bergström, L. (eds) Organic Crop Production – Ambitions and Limitations. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9316-6_9

Download citation

Publish with us

Policies and ethics