Skip to main content

Abstract

The supramolecular composites containing fullerenes C60 immobilized at nanosilica were used for the design of the molecular systems that can be an effective agent in cancer photodynamic therapy (PDT). In particular, it was shown that photoexcited fullerene C60-containing composites decrease viability of transformed cells, intensify the process of lipid peroxidation (LPO) in cell membranes and accumulation of low-molecular weight DNA fragments, and also decrease the activity of electron-transport chain of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arbogast J, Foote Y (1991) Photophysical properties of C70. J Am Chem Soc. 113: 8886-8889.

    Article  Google Scholar 

  • Boutorine AS, Tokuyama H, Takasugi M et al. (1994) Singlet oxygen production from fullerene derivatives. Angew Chem Int Ed. 33: 2462-2465.

    Google Scholar 

  • Burlaka AP, Danko MI, Sidorik EP (1994) Kinetic patterns of the rate of generation and content of oxygen radicals in EPR membranes upon chemical carcinogenesis of liver and breast. Ukrainian DAN Ukr. 10: 141-145.

    Google Scholar 

  • Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. 62: 315-323.

    Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF et al. (1987) Evaluation of a tetrazolium-based semiauto-mated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.

    Google Scholar 

  • Chi Y, Canteenwala T, Chen H et al. (2002) Free radicals scavenging and photodynamic functions of micelle-like hydrophilic hexa(sulfobutyl)fullerene (FC4S). Perspect Fullerene Nanobiotechnol. 15: 165-183.

    Article  Google Scholar 

  • Chuyiko AA (2003) Medical chemistry and clinic application of silicon dioxide. Russian Naukova Dumka, Kiev.

    Google Scholar 

  • Da Ros T, Spalluto G, Prato M (2001) Biological applications of fullerene derivatives: a brief overview. Croatica Chemica Acta. 74: 743-755.

    Google Scholar 

  • Foley S, Crowley C, Smaihi M et al. (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 294: 116-119.

    Article  Google Scholar 

  • Gavrilov VB, Gavrilova AR, Khmara NF (1988) Measurement of diene conjugants in the plasma blood by UV absorption of heptane and isopropanole extracts. Russian Laboratornoe Delo. 2: 60-63.

    Google Scholar 

  • Golub A, Matyshevska O, Prylutska S et al. (2003) Fullerenes immobilized at silica surface: topol-ogy, structure and bioactivity. J Mol Liq. 105: 141-147.

    Article  Google Scholar 

  • Grossweiner LI, Patel AS, Grossweiner JB (1982) Type I and type II mechanisms in the photo-sensitizing lyses of phosphatidylcholine liposomes by hematoporphyrin. Photochem Photobiol. 36: 159-167.

    Article  Google Scholar 

  • Guldi DM, Asmus KD (1999) Activity of water-soluble fullerenes towards OH-radicals and molecular oxygen. Radiat Phys Chem. 56: 449-456.

    Article  Google Scholar 

  • Hamano T, Okuda K, Mashino T, et al. (1997) Singlet oxygen production from fullerene deriva-tives: effect of sequential functionalization of the fullerene core. Chem Commun. 1: 21-22.

    Article  Google Scholar 

  • Irie K, Nakamura Y, Ohigashi H et al. (1996) Photocytotoxicity of water-soluble fullerene derivatives. Biosci Biotechnol Biochem. 60: 1359-1361.

    Article  Google Scholar 

  • Isaacs N, Nichols P, Raston C et al. (1997) Solution volume studies of a deep cavity inclusion complex of C60: p-benzyl calyx[5]arene. Chem Commun. 19: 1839-1840.

    Article  Google Scholar 

  • Kamat J, Devasagayam T, Priyadarsini K, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology. 155: 55-61.

    Article  Google Scholar 

  • Kolesova OE, Markin AA, Fedorova TN (1984) Pereoxide oxidation of lipids and the methods for determination of lipid peroxidation produce in the biological mediums. Russian Laboratornoe Delo. 9: 540-546.

    Google Scholar 

  • Pass HI (1993) Photodynamic therapy in oncology: mechanisms and clinical use. J. Natl Cancer Inst. 85: 443-456.

    Article  Google Scholar 

  • Prylutska SV, Grynyuk II, Golub OA, Matyshevska OP (2006) Estimation of cytotoxicity param-eters of C60 fullerenes and C60-containing composites in vitro. Ukrainian DAN Ukr. 1: 163-167.

    Google Scholar 

  • Samal S, Geckeler K (2001) DNA-cleavage by Fullerene-Based Synzymes. Macromolecular Bioscience. 1: 329-331.

    Article  Google Scholar 

  • Scharff P, Risch K, Carta-Abelmann L et al. (2004) Structure of C60 fullerene in water: spectro-scopic data. Carbon. 42: 1203-1206.

    Article  Google Scholar 

  • Tabata Y, Ikada Y (1999) Biological functions of fullerene. Pure Appl Chem. 71: 2047-2053.

    Article  Google Scholar 

  • Tokuyama H, Yamago S, Nakamura E, et al. (1993) Photoinduced biochemical activity of fuller-ene carbocyclic acid. J Am Chem Soc. 115: 7918-7919.

    Article  Google Scholar 

  • Vladimirov Yu A (2002) Breach of barrier properties for internal and external mitochondrion membranes, necrosis and apoptosis. Russian Biol Membr. 19: 356-377.

    Google Scholar 

  • Wilson SR (2000) Fullerenes: chemistry, physics and technology. Wiley, New York.

    Google Scholar 

  • Yamakoshi Y, Yagami T, Fukuhara K, et al. (1994) Solubilisation of fullerenes into water with polyvinylpyrrolidone applicable to biological test. J Chem Soc Chem Commun. 4: 517-518.

    Article  Google Scholar 

  • Yoshida Z, Takekuma H, Takekuma S, Matsubara Y (1994) Molecular recognition of C60 with g-cyclodextrin. Angew Chem Int Ed. 33: 1597-1599.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Prylutska, S.V. et al. (2008). Effects of Photoexcited Fullerene C60-Composites in Normal and Transformed Cells. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_6

Download citation

Publish with us

Policies and ethics