Skip to main content

Auxin and Cytokinin Signaling Component Genes and Their Potential for Crop Improvement

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Plant hormones auxin and cytokinin exert pleiotropic effects on growth and development, both individually and in a combinatorial manner. In recent years, our understanding of mechanisms of auxin and cytokinin action has improved considerably. This has largely been due to the molecular genetic analysis of hormone perception and signal transduction mutants of Arabidopsis, the model dicot plant, and also the availability of a high quality sequence of its 125 Mb genome. However, little work has been carried out in other plant species. Advances in genomics, particularly on rice, maize, sorghum and tomato, provide new opportunities for investigating these components in crop plants. A comparative analysis of Arabidopsis and rice genome sequences is already paying rich dividends and evolutionary relationship among various classes of gene families has been established, including those representing components of auxin and cytokinin signaling. Some of these auxin and cytokinin signaling components are proving to be invaluable genetic tools for manipulation of agronomic traits in crop plants, and it has been illustrated in this article with the help of a few suitable examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed  CAS  Google Scholar 

  • Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, The Netherlands, pp 531–546

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Balbi V, Lomax TL (2003) Regulation of early tomato fruit development by the diageotropica gene. Plant Physiol 131:186–197

    Article  PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichman, T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  CAS  Google Scholar 

  • Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutant of Arabidopsis thaliana. Plant J 8:505–520

    Article  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Jurgens G (1993) The role of the MONOPTEROS gene in organizing the basal body region of the Arabidopsis embryo. Development 122:575–587

    Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    Article  PubMed  CAS  Google Scholar 

  • Beyer EM, Quebedeaux B (1974) Parthenocarpy in cucumber: mechanism of action of auxin transport inhibitors. J Am Soc Hortic Sci 99:385–390

    CAS  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    Article  PubMed  CAS  Google Scholar 

  • Brandes H, Kende H (1968) Studies on cytokinin-controlled bud formation in moss protonemata. Plant Physiol 43:827–837

    Article  PubMed  CAS  Google Scholar 

  • Chin-Atkins AN, Craig S, Hocart CH, Dennis ES, Chaudhury AM (1996) Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses. Planta 198:549–556

    Article  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-Etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 104:339–347

    PubMed  CAS  Google Scholar 

  • Christianson ML (2000) ABA prevents the second cytokinin-mediated event during the induction of shoot buds in the moss Funaria hygrometrica. Am J Bot 87:1540–1545

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta U (2002) Molecular characterization of light signal transduction mutants (pho) and analysis of the promoter of a light-regulated gene, PSBO A, from Arabidopsis. Ph D Thesis, University of Delhi, India

    Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Press, The Netherlands.

    Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, Van Onckelen H, Schwarz-Sommer Z, Sommer H, Spena A (1993) Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J 4:379–384

    Article  PubMed  CAS  Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470

    Article  Google Scholar 

  • Franco AR, Gee MA, Guilfoyle TJ (1990) Induction and superinduction of auxin-responsive mRNAs with auxin and protein synthesis inhibitors. J Biol Chem 265:15845–15849

    PubMed  CAS  Google Scholar 

  • Fuerst RA, Soni R, Murray JA, Lindsey K (1996) Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol 112:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Gan S (2004) The hormonal regulation of senescence In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action. Kluwer Academic publishers, The Netherlands, pp 561–581

    Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. Bioessays 18:557–565

    Article  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Estelle I (2000) Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci 25:133–138

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amesterdem, The Netherlands, pp 423–459

    Google Scholar 

  • Guilfoyle TJ, Hagen G, Li Y, Ulmasov T, Liu Z, Strabala T, Gee MA (1993) Auxin-regulated transcription. Aust J Plant Physiol 20:489–502

    Article  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Kleinschmidt AJ, Guilfoyle TJ (1984) Auxin-regulated gene expression in intact soybean hypocotyls and excised hypocotyls sections. Planta 16:147–153

    Article  Google Scholar 

  • Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23:3290–3302

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Heyl A, Schmulling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  PubMed  CAS  Google Scholar 

  • Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127:23–32

    PubMed  CAS  Google Scholar 

  • Holmberg N, Bulow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Hsieh HL, Okamoto H, Wang M, Ang LH, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14:1958–1970

    PubMed  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14:S47–59

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana, JP (2006c) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006d) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6:1

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006b) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006a) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  Google Scholar 

  • Johnson MA, Perez-Amador MA, Lidder P, Green PJ (2000) Mutants of Arabidopsis defective in a sequence-specific mRNA degradation pathway. Proc Natl Acad Sci USA 97:13991–13996

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu,Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2004) Auxin-induced SCF^TIR1-Aux/IAA interaction involves stable modification of the SCF^TIR1 complex. Proc Natl Acad Sci USA 101:12381–12386

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP (2001) Cryptic blues: mechanism in sight. Curr Sci 80:189–198

    CAS  Google Scholar 

  • Khurana JP, Dasgupta U, Laxmi A, Kumar D, Paul LK (2004) Light control of plant development by phytochromes: a perspective. Proc Indian Natl Sci Acad B70:379–411

    CAS  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Google Scholar 

  • Kiba T, Taniguchi M, Imamura A, Ueguchi C, Mizuno T, Sugiyama T (1999) Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant Cell Physiol 40:767–771

    PubMed  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Kuhlemeier C, Reinhardt D (2001) Auxin and phyllotaxis. Trends Plant Sci 6:187–189

    Article  PubMed  CAS  Google Scholar 

  • Laxmi A, Paul LK, Raychaudhuri A, Peters JL, Khurana JP (2006) Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol Biol 62:409–425

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Strabala TJ, Hagen G, Guilfoyle TJ (1994) The soybean SAUR open reading frame contains a cis element responsible for cycloheximide-induced mRNA accumulation. Plant Mol Biol 24:715–723

    Article  PubMed  CAS  Google Scholar 

  • Lidder P, Gutierrez RA, Salome PA, McClung CR, Green PJ (2005) Circadian control of messenger RNA stability association with a sequence-specific messenger RNA decay pathway. Plant Physiol 138:2374–2385

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: i characterization with APRR1-overexpressing plants. Plant Cell Physiol 43:58–69

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41:791–803

    PubMed  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE (2004) Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol 135:927–937

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: II characterization with CCA1-overexpressing plants. Plant Cell Physiol 43:118–122

    Article  PubMed  CAS  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • McClure BA, Guilfoyle T (1987) Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9:611–623

    Article  CAS  Google Scholar 

  • McClure BA, Guilfoyle T (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 243:91–93

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    Article  PubMed  CAS  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) Pseudo-response regulators, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25:213–221

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888

    PubMed  CAS  Google Scholar 

  • Nemhauser JL, Zambryski PC, Roe JL (1998) Auxin signaling in Arabidopsis flower development. Curr Opin Plant Biol 1:531–535

    Article  PubMed  CAS  Google Scholar 

  • Newman TC, Ohme-Takagi M, Taylor CB, Green PJ (1993) DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell 5:701–714

    Article  PubMed  CAS  Google Scholar 

  • Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37:211–215

    Article  CAS  Google Scholar 

  • Oka A, Sakai H, Iwakoshi S (2002) His-Asp phosphorelay signal transduction in higher plants: receptors and response regulators for cytokinin signaling in Arabidopsis thaliana. Genes Genet Syst 77:383–391

    Article  PubMed  CAS  Google Scholar 

  • Oka M, Miyamoto K, Okada K, Ueda J (1999) Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant Cell Physiol 40:231–237

    PubMed  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun 293:806–815

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole genome analysis of Oryza sativa L reveals similar architecture of two-component-signaling-machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  PubMed  CAS  Google Scholar 

  • Pennazio S (2002) The discovery of the chemical nature of the plant hormone auxin. Riv Biol 95:289–308

    PubMed  Google Scholar 

  • Perez-Amador MA, Lidder P, Johnson MA, Landgraf J, Wisman E, Green PJ (2001) New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis. Plant Cell 13:2703–2717

    Article  PubMed  CAS  Google Scholar 

  • Phillips SE (1994) The beta-ribbon DNA recognition motif. Annu Rev Biophys Biomol Struct 23:671–701

    Article  PubMed  CAS  Google Scholar 

  • Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  PubMed  CAS  Google Scholar 

  • Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349–2360

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Poovaiah BW (1987) Accumulation of a glycine rich protein in auxin-deprived strawberry fruits. Biochem Biophys Res Commun 147:885–891

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Poovaiah BW (1990) Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene. Plant Mol Biol 14:127–136

    Article  PubMed  CAS  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmar, A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480

    Article  PubMed  CAS  Google Scholar 

  • Rotino GL, Perri E, Zottini M, Sommer H, Spena A (1997) Genetic engineering of parthenocarpic plants. Nat Biotechnol 15:1398–1401

    Article  PubMed  CAS  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373

    Article  PubMed  CAS  Google Scholar 

  • Roux C, Perrot-Rechenmann C (1997) Isolation by differential display and characterization of a tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Lett 419:131–136

    Article  PubMed  CAS  Google Scholar 

  • Rupp HM, Frank M, Werner T, Strnad M, Schmulling T (1999) Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J 18:557–563

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Bono H, Oka A (1998) Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol 39:1232–1239

    PubMed  CAS  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  PubMed  CAS  Google Scholar 

  • Salamini F (2003) Hormones and the green revolution. Science 302:71–72

    Article  PubMed  CAS  Google Scholar 

  • Saunders MJ, Hepler PK (1983) Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria. Dev Biol 99:41–49

    Article  PubMed  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1965) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In: Bell E (ed) Molecular and cellular aspects of development. Harper and Row, New York, pp 481–494

    Google Scholar 

  • Srivastava LM (2001) Plant growth and development-hormones and environment. Elsevier Science, San Diego, pp 303–339

    Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  PubMed  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294:1108–1111

    Google Scholar 

  • Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39

    Article  PubMed  CAS  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M (2003) DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol 44:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37:471–483

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Mochizuki N, Nagatani A (2002) Expression of the AtGH3a gene, an Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B. Plant Cell Physiol 43:281–289

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, Mizuno T, Sugiyama T (1998) Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett 429:259–262

    Article  PubMed  CAS  Google Scholar 

  • Tantikanjana T, Yong, JW, Letham, DS, Griffith, M, Hussain, M, Ljung, K, Sandberg, G, Sundaresan, V (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 15:1577–1588

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98:9437–9442

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Tyagi AK, Khurana JP (2001) OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light. DNA Res 8:193–203

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Jain M, Tyagi AK, Khurana JP (2005) Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsiIAA1, an Aux/IAA protein from rice, via proteasome. Biochim Biophys Acta 1730:196–205

    PubMed  CAS  Google Scholar 

  • Thomas J, Ross CW, Chastain CJ, Koomanoff N, Hendrix JE (1981) Cytokinin-induced wall extensibility in excised cotyledons of radish and cucumber. Plant Physiol 68:107–110

    PubMed  CAS  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001a) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  CAS  Google Scholar 

  • Ueguchi C, Sato S, Kato T, Tabata S (2001b) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  CAS  Google Scholar 

  • Urao T, Yakubov B, Yamaguchi-Shinozaki K, Shinozaki K (1998) Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett 427:175–178

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K, (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed  CAS  Google Scholar 

  • Veena Reddy VS, Sopory SK, (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  Google Scholar 

  • Veluthambi K, Poovaiah BW (1984) Auxin-regulated polypeptide changes at different stages of strawberry fruit development. Plant Physiol 75:349–353

    PubMed  CAS  Google Scholar 

  • Vij S, Gupta V, Kumar D, Vydianathan R, Raghuvanshi S, Khurana P, Khurana JP, Tyagi AK (2006) Decoding the rice genome. Bioessays 28:421–432

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signaling. Plant J 21:553–562

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137–3143

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Toai TC, Huynh L, Priszner J (2000) Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed 6:135–144

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Khurana, J.P., Jain, M., Tyagi, A.K. (2007). Auxin and Cytokinin Signaling Component Genes and Their Potential for Crop Improvement. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_13

Download citation

Publish with us

Policies and ethics