Skip to main content

The Maize Megagametophyte

  • Chapter
Book cover Handbook of Maize: Its Biology

Abstract

The life cycle of plants alternates between a diploid and a haploid generation. In flowering plants the haploid gametophytes are sexually dimorphic and produce the gametes, which fuse to produce the diploid sporophyte of the next generation. The megagametophyte of maize follows the Polygonum-type pattern of development: one of the four meiotic products, the functional megaspore, undergoes three free nuclear divisions to produce a polarized, eight-nucleate syncytium. Cellularization produces seven cells that differentiate into four cell types: two synergids, three antipodals, and the two female gametes, the egg cell and the central cell. The position of the nuclei in the syncytial phase and the position and differentiation of cell types after cellularization follow stereotypical patterns, suggesting a tight genetic regulation of the cellular processes involved. Recent genetic evidence demonstrates that many of these cellular processes are regulated by the activity of the haploid genome of the megagametophyte itself, rather than the parental diploid genome from which it originates. The functions performed by the megagametophyte includes both basic cellular functions and functions that unique to the megagametophyte, such as pollen tube guidance and reception, as well as processes associated with double fertilization and the maternal control over seed development. In this chapter we describe the development and functions of the megagametophyte, and what is known the regulation of the underlying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Garcia G, and Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16: 2614–2628.

    CAS  PubMed  Google Scholar 

  • Antoine AF, Faure JE, Cordeiro S, Dumas C, Rougier M, and Feijó JA (2000) A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. PNAS USA 97:10643–10648.

    CAS  PubMed  Google Scholar 

  • Antoine AF, Faure JE, Dumas C, and Feijó JA (2001) Differential contribution of cytoplasmic Ca 2+ and Ca2+influx to gamete fusion and egg activation in maize. Nat Cell Biol 3:1120–1123.

    CAS  PubMed  Google Scholar 

  • Arthur KM, Vejlupkova Z, Meeley RB, and Fowler JE (2003) Maize ROP2 GTPase provides a competitive advantage to the male gametophyte. Genetics 165: 2137–2151.

    CAS  PubMed  Google Scholar 

  • Auger DL, and Birchler JA (2002) Maize tertiary trisomic stocks derived from B-A translocations. J Hered 93: 42–47.

    CAS  PubMed  Google Scholar 

  • Baroux C, Blanvillain R, and Gallois P (2001) Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Lett. 509: 11–16.

    CAS  PubMed  Google Scholar 

  • Baroux C, Spillane C, and Grossniklaus U (2002) Genomic imprinting during seed development. Adv Genet Inc Mol Genet Med 46: 165–214.

    CAS  Google Scholar 

  • Barrell PJ, and Grossniklaus U (2005) Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis II. Plant J 43 : 309 – 320.

    CAS  PubMed  Google Scholar 

  • Birchler JA (1993) Dosage analysis of maize endosperm development. Annu Rev Genet 2 7: 181–204.

    Google Scholar 

  • Bonhomme S, Horlow C, Vezon D, De Laissardiere S, Guyon A, (1998) T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol Gen Genet 260: 444–452.

    CAS  PubMed  Google Scholar 

  • Brukhin V, Curtis MD, and Grossniklaus U (2005) The angiosperm female gametophyte: no longer the forgotten generation. Curr Sci 89: 1844–1852.

    Google Scholar 

  • Buckner B, and Reeves SL (1994) Viability of female gametophytes that possess deficiencies for the region of chromosome 6 containing the Y1 gene. Maydica 39: 247–254.

    Google Scholar 

  • Capron A, Serralbo O, Fulop K, Frugier F, Parmentier Y, (2003) The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. Plant Cell 15: 2370–2382.

    CAS  PubMed  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, (1997) Fertilization-independent seed development in Arabidopsis thaliana Proc Natl Acad Sci USA 94: 4223–4228.

    CAS  Google Scholar 

  • Chen YC, and McCormick S (1996) sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122: 3243–3253.

    CAS  PubMed  Google Scholar 

  • Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19, 3563–3577.

    CAS  PubMed  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110: 33–42.

    CAS  PubMed  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, and Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10: 49–64.

    Google Scholar 

  • Christensen CA, Subramanian S, and Drews GN (1998) Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol 202: 136–151.

    CAS  PubMed  Google Scholar 

  • Coe EH, Neuffer MG, and Hoisington DA (1988) The genetics of corn. In GF Sprague and WJ Dudley (eds.), Corn and Corn Improvement (pp. 81–258). Madison, Wisconsin: American Society for Agronomy.

    Google Scholar 

  • Cordts S, Bantin J, Wittich PE, Kranz E, Lorz H, (2001) ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize. Plant J 25: 103–114.

    CAS  PubMed  Google Scholar 

  • Day RC, Grossniklaus U, and Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10: 397–406.

    CAS  PubMed  Google Scholar 

  • Diboll AG (1968) Fine structural development of the megagametophyte of Zea mays following fertilization. Am J Bot 55: 797–806.

    Google Scholar 

  • Diboll AG, and Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays Am J Bot 53: 391–402.

    CAS  Google Scholar 

  • Dilkes BP, and Comai L (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16: 3174–3180.

    PubMed  Google Scholar 

  • Ebel C, Mariconti L, and Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429: 776–780.

    CAS  PubMed  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317: 656–660.

    CAS  PubMed  Google Scholar 

  • Evans MMS (2007) The Indeterminate gametophyte1 Gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19: 46–62.

    CAS  PubMed  Google Scholar 

  • Evans MMS, and Kermicle JL (2001) Interaction between maternal effect and zygotic effect mutations during maize seed development. Genetics 159: 303 – 315.

    CAS  PubMed  Google Scholar 

  • Faure JE, Mogensen HL, Dumas C, Lorz H, and Kranz E (1993) Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5:747–755.

    PubMed  Google Scholar 

  • Faure JE, Digonnet C, and Dumas C (1994) An in vitro system for adhesion and fusion of maize gametes. Science 263: 1598–1600.

    CAS  PubMed  Google Scholar 

  • Faure JE, Rusche ML, Thomas A, Keim P, Dumas C, (2003) Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J 33: 1051–1062.

    PubMed  Google Scholar 

  • Feldmann KA, Coury DA, and Christianson ML (1997) Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 147: 1411–1422.

    CAS  PubMed  Google Scholar 

  • Gavazzi G, Dolfini S, Allegra D, Castiglioni P, Todesco G, (1997) Dap ( Defective aleurone pigmentation) mutations affect maize aleurone development. Mol Gen Genet 256: 223–230.

    CAS  PubMed  Google Scholar 

  • Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, (2002) Short Integuments1/Suspensor1/ Carpel Factory, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol 130: 808–822.

    PubMed  Google Scholar 

  • Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, (2003) AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol 131: 547–557.

    CAS  PubMed  Google Scholar 

  • Gray-Mitsumune M, and Matton DP (2006) The Egg apparatus1 gene from maize is a member of a large gene family found in both monocots and dicots. Planta 223: 618–625.

    CAS  PubMed  Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, and Leblanc O (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17: 1061–1072.

    CAS  PubMed  Google Scholar 

  • Grini PE, Jurgens G, and Hulskamp M (2002) Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162: 1911–1925.

    CAS  PubMed  Google Scholar 

  • Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5: e47.

    Google Scholar 

  • Grossniklaus U (2005) Genomic imprinting in plants: a predominantly maternal affair. In P. Meyer (ed.) Annual Plant Reviews: Plant Epigenetics(pp. 174–200). Blackwell, Sheffield, UK.

    Google Scholar 

  • Grossniklaus U, and Schneitz K (1998) Genetic and molecular control of ovule development and megagametogenesis. Semin Cell Dev Biol 9: 227–238.

    CAS  PubMed  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, and Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280: 446–450.

    CAS  PubMed  Google Scholar 

  • Guignard L (1899) Sur les antherozoides et la double copulation sexuelle chez les végétaux angiospermes. Compt Rend Acad Sci Paris 128: 864–871.

    Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, (2004) Identification of new members of FERTILIZATION INDEPENDENT SEED Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana Development 131: 2971–2981.

    CAS  Google Scholar 

  • Guo F, Huang B-Q, Han Y, and Zee SY (2004) Fertilization in maize indeterminate gametophyte1 mutant. Protoplasma 223: 111–120.

    PubMed  Google Scholar 

  • Gupta R, Ting JT, Sokolov LN, Johnson SA, and Luan S (2002) A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14: 2495–2507.

    CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Costa LM, and Evans MMS (2006) Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize ( Zea mays). Genetics 174: 317–329.

    CAS  Google Scholar 

  • Hejatko J, Pernisova M, Eneva T, Palme K, and Brzobohaty B (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genomics 269: 443–453.

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, and Kuroiwa T (1997) Kinetics of double fertilization in Torenia fournieri based on direct observations of the naked embryo sac. Planta 203: 101–110.

    CAS  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, and Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10: 2019–2031.

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, and Kuroiwa T (2000) Explosive discharge of pollen tube contents in Torenia fournieri Plant Physiol 122:11–14.

    CAS  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, (2001) Pollen tube attraction by the synergid cell. Science 293: 1480–1483.

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, (2006) Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri Plant Physiol 142:481–491.

    CAS  Google Scholar 

  • Holt BF 3rd, Boyes DC, Ellerstrom M, Siefers N, Wiig A, (2002) An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev Cell 2: 807–817.

    PubMed  Google Scholar 

  • Hoshina Y, Scholten S, von Wiegen P, Lorz H, and Kranz E (2004) Fertilization-induced changes in the microtubular architecture of the maize egg cell and zygote – an immunocytochemical approach adapted to single cells. Sex Plant Reprod 17: 89–95.

    Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149: 621–631.

    CAS  PubMed  Google Scholar 

  • Huanca-Mamani W, Garcia-Aguilar M , Leon-Martinez G , Grossniklaus U , and Vielle-Calzada JP (2005) CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana Proc Natl Acad Sci USA 102: 17231–17236.

    CAS  Google Scholar 

  • Huang BQ, and Russell SD (1994) Fertilization in Nicotiana tabacum – cytoskeletal modifications in the embryo sac during synergid degeneration – a hypothesis for short-distance transport of sperm cells prior to gamete fusion. Planta 194: 200–214.

    CAS  Google Scholar 

  • Huang BQ, and Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6: 845–861.

    PubMed  Google Scholar 

  • Huang BQ, and Sheridan WF (1996) Embryo sac development in the maize indeterminate gametophyte1 mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell 8: 1391–1407.

    CAS  PubMed  Google Scholar 

  • Huang BQ, Pierson ES, Russell SD, Tiezzi A, and Cresti M (1993) Cytoskeletal organisation and modification during pollen tube arrival, gamete delivery and fertilisation in Plumbago zeylanica Zygote 1:143–154.

    CAS  Google Scholar 

  • Huck N, Moore JM, Federer M, and Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130: 2149–2159.

    CAS  PubMed  Google Scholar 

  • Hülskamp M, Schneitz K, and Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen-tube guidance in Arabidopsis. Plant Cell 7: 57–64.

    PubMed  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584–596.

    CAS  PubMed  Google Scholar 

  • Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8: R204.

    PubMed  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, and Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3: 1848–1861.

    CAS  PubMed  Google Scholar 

  • Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, and Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17: 2981–2992.

    CAS  PubMed  Google Scholar 

  • Kerk NM, Ceserani T, Tausta SL, Sussex IM, and Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132: 27–35.

    CAS  PubMed  Google Scholar 

  • Kermicle JL (1970) Somatic and meiotic instability of R-strippled, an aleurone spotting factor in maize. Genetics 64: 247.

    CAS  PubMed  Google Scholar 

  • Kermicle JL (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am J Bot 58: 1–7.

    Google Scholar 

  • Kiesselbach TA (1949) The structure and reproduction of corn. Univ Nebraska Coll Agric, Agric Exp Stn Res Bull 161: 1–96.

    Google Scholar 

  • Kim HU, Li Y, and Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17: 1073–1089.

    CAS  PubMed  Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22: 4804–4814.

    PubMed  Google Scholar 

  • Kranz E, and Lörz H (1994) In vitro fertilisation of maize by single egg and sperm cell protoplast fusion mediated by high calcium and high pH. Zygote 2: 125–128.

    CAS  PubMed  Google Scholar 

  • Kranz E, Bautor J, and Lorz H (1991) Electrofusion-mediated transmission of cytoplasmic organelles through the in vitro fertilization process, fusion of sperm cells with synergids and central cells, and cell reconstitution in maize. Sex Plant Reprod 4: 17–21.

    Google Scholar 

  • Kranz E, von Wiegen P, Quader H, and Lorz H (1998) Endosperm development after fusion of isolated, single maize sperm and central cells in vitro Plant Cell 10:511–524.

    CAS  Google Scholar 

  • Kwee HS, and Sundaresan V (2003) The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in arabidopsis. Plant J 36: 853–866.

    CAS  PubMed  Google Scholar 

  • Le Q, Gutierrez-Marcos JF, Costa LM, Meyer S, Dickinson HG, (2005) Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J 4 4 : 167–178.

    CAS  PubMed  Google Scholar 

  • Lin B-Y (1978) Structural modifications of the female gametophyte associated with the indeterminate gametophyte ( ig) mutant in maize. Can J Genet Cytol 20: 249–257.

    Google Scholar 

  • Lin B-Y (1981) Megagametogenetic alterations associated with the indeterminate gametophyte ( ig) mutation in maize. Rev Bras Biol 41: 557–563.

    Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 296–301.

    CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, and Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. PNAS USA 97: 10637–10642.

    CAS  PubMed  Google Scholar 

  • Marton ML, Cordts S, Broadhvest J, and Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307: 573–576.

    CAS  PubMed  Google Scholar 

  • Meyer S, and Scholten S (2007) Equivalent parental contribution to early plant zygotic development. Curr Biol 17: 1686–1691.

    CAS  PubMed  Google Scholar 

  • Meyer RC, Torjek O, Becher M, and Altmann T (2004) Heterosis of Biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134: 1813–1823.

    CAS  PubMed  Google Scholar 

  • Miyazaki S, and Ito M (2006) Calcium signals for egg activation in mammals. J Pharmacol Sci 100: 545–552 (Sp. Iss).

    CAS  PubMed  Google Scholar 

  • Mogensen HL (1982) Double fertilization in barley and the cytological explanation for haploid embryo formation, embryoless caryopses, and ovule abortion. Carlsberg Res Commun 47: 313–354.

    Google Scholar 

  • Mol R, Matthys-Rochon E, and Dumas C (1994) The kinetics of cytological events during double fertilization in Zea mays L. Plant J 5: 197–206.

    Google Scholar 

  • Mol R, Idzikowska K, Dumas C, and Matthys-Rochon E (2000) Late steps of egg cell differentiation are accelerated by pollination in Zea mays L. Planta 210: 749–757.

    CAS  Google Scholar 

  • Moll C, van Lyncker L, Zimmermann S, Kägi C, Baumann N, Twell D, Grossniklaus U, and Groß-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J., in press.

    Google Scholar 

  • Moore JM (2002) Isolation and characterization of gametophytic mutants in Arabidopsis thaliana. State University of New York at Stony Brook. Ph.D. Thesis.

    Google Scholar 

  • Moore JM, Calzada JP, Gagliano W, and Grossniklaus U (1997) Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 62: 35–47.

    CAS  PubMed  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, and Kuroiwa T (2006) GENERATIVE CELL SPECIFIC1 is essential for angiosperm fertilization. Nat Cell Biol 8: 64–71.

    CAS  PubMed  Google Scholar 

  • Mouline K, Very AA, Gaymard F, Boucherez J, Pilot G, (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev 16: 339–350.

    CAS  PubMed  Google Scholar 

  • Murgia M, Huang B-Q, Tucker SC, and Musgrave ME (1993) Embryo sac lacking antipodal cells in Arabidopsis thaliana ( Brassicaceae). Am J Bot 80: 824–838.

    Google Scholar 

  • Nawaschin SG (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bul Acad Imp des Sci St. Petersburg 9: 377–382.

    Google Scholar 

  • Nelson OM, and Clary GB (1952) Genic control of semi-sterility in maize. J Hered 43: 205–210.

    Google Scholar 

  • Ngo QA, Moore JM, Baskar R, Grossniklaus U, and Sundaresan V (2007) Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles. Development 134: 4107–4117.

    CAS  PubMed  Google Scholar 

  • Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17: 760–775.

    CAS  PubMed  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38: 63–67.

    CAS  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, and Fischer RL (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407–416.

    CAS  PubMed  Google Scholar 

  • Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93: 5319–5324.

    CAS  PubMed  Google Scholar 

  • Page DR, and Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3: 124–136.

    CAS  PubMed  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614.

    CAS  PubMed  Google Scholar 

  • Pagnussat GC, Yu HJ, and Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19: 3578–3592.

    CAS  PubMed  Google Scholar 

  • Palanivelu R, and Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6: 7.

    PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, and Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114: 47–59.

    CAS  PubMed  Google Scholar 

  • Park SK, Howden R, and Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125: 3789–3799.

    CAS  PubMed  Google Scholar 

  • Park SK, Rahman D, Oh SA, and Twell D (2004) Gemini pollen2, a male and female gametophytic cytokinesis defective mutation. Sex Plant Reprod 17: 63–70.

    CAS  PubMed  Google Scholar 

  • Patterson EB (1978) Properties and uses of duplicate-deficient chromosome complements in maize. In D. B. Walden (ed.), Maize Breeding and Genetics (pp. 693–710). John Wiley and Sons, New York.

    Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA 99: 15800–15805.

    CAS  PubMed  Google Scholar 

  • Procissi A, De Laissardiere S, Ferault M, Vezon D, Pelletier G, (2001) Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics 158: 1773–1783.

    CAS  PubMed  Google Scholar 

  • Procissi A, Guyon A, Pierson ES, Giritch A, Knuiman B, (2003) KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J 36: 894–904.

    CAS  PubMed  Google Scholar 

  • Punwani JA, Rabiger DS, and Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19: 2557–2568.

    CAS  PubMed  Google Scholar 

  • Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agr Res 53: 881–916.

    Google Scholar 

  • Ray SM, Park SS, and Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124: 2489–2498.

    CAS  PubMed  Google Scholar 

  • Redei GP (1965) Non-Mendelian megagametogenesis in Arabidopsis. Genetics 51: 857–872.

    CAS  PubMed  Google Scholar 

  • Rhoades MM, and Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54: 505–522.

    CAS  PubMed  Google Scholar 

  • Roman H (1947) Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32: 391–409.

    Google Scholar 

  • Roman H (1948) Selective fertilization in maize. Genetics 33: 122–122.

    CAS  PubMed  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13: 432–436.

    CAS  PubMed  Google Scholar 

  • Russell SD (1979) Fine structure of megagametophyte development in Zea mays. Can J Bot 57: 1093–1110.

    Google Scholar 

  • Russell SD (1984) Ultrastructure of the sperm of Plumbago zeylanica. 2. Quantitative cytology and 3-dimensional organization. Planta 162: 385–391.

    Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago – ultrastructural evidence for gametelevel recognition in an angiosperm. PNAS USA 82: 6129–6132.

    CAS  PubMed  Google Scholar 

  • Russell SD (1996) Attraction and transport of male gametes for fertilization. Sex Plant Reprod 9: 337–342.

    Google Scholar 

  • Sari-Gorla M, Ferrario S, Villa M, and Pe ME (1996) gaMS-1: a gametophytic male sterile mutant in maize. Sex Plant Reprod 9: 216–220.

    Google Scholar 

  • Sari-Gorla M, Gotti E, Villa M, and Pe ME (1997) A multi-nucleate male-sterile mutant of maize with gametophytic expression. Sex Plant Reprod 10: 22–26.

    Google Scholar 

  • Sheridan WF, and Huang BQ (1997) Nuclear behavior is defective in the maize ( Zea mays L.) lethal ovule2 female gametophyte. Plant J 11: 1029–1041.

    CAS  Google Scholar 

  • Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, and Golubovskaya IN (1996) The Mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142: 1009–1020.

    CAS  PubMed  Google Scholar 

  • Shi DQ, Liu J, Xiang YH, Ye D, Sundaresan V, (2005) SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17: 2340–2354.

    CAS  PubMed  Google Scholar 

  • Shimizu KK, and Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127: 4511–4518.

    CAS  PubMed  Google Scholar 

  • Singleton WR, and Mangelsdorf PC (1940) Gametic lethals on the fourth chromosome of maize. Genetics 25: 366–390.

    CAS  PubMed  Google Scholar 

  • Sorensen MB, Chaudhury AM, Robert H, Bancharel E, and Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11: 277–281.

    CAS  PubMed  Google Scholar 

  • Sprague GF (1932) The nature and extent of hetero-fertilization in maize. Genetics 1 7: 0358–0368.

    CAS  Google Scholar 

  • Springer PS, Mc Combie WR, Sundaresan V, and Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2–3–5-like gene in Arabidopsis. Science 268: 877–880.

    CAS  PubMed  Google Scholar 

  • Springer PS, Holding DR, Groover A, Yordan C, and Martienssen RA (2000) The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development 127: 1815–1822.

    CAS  PubMed  Google Scholar 

  • Sprunck S, Baumann U, Edwards K, Langridge P, and Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat ( Triticum aestivum L.). Plant J 41: 660–672.

    CAS  PubMed  Google Scholar 

  • Stinard PS, and Robertson DS (1987) Dappled: a putative Mu-induced aleurone develomental mutant. Maize Genet Coop Newsl 61: 7–9.

    Google Scholar 

  • Sun M-X, Kranz E, Yang H-Y, Lorz H, Moscatelli A, (2002) Fluorophore-conjugated lectin labeling of the cell surface of isolated male and female gametes, central cells and synergids before and after fertilization in maize. Sex Plant Reprod 15: 159–166.

    CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, and Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9: 1797–1810.

    CAS  PubMed  Google Scholar 

  • Tsaadon A, Eliyahu E, Shtraizent N, and Shalgi R (2006) When a sperm meets an egg: block to polyspermy. Mol Cell Endocrinol 252:107–114.

    CAS  PubMed  Google Scholar 

  • Vielle-Calzada JP, Baskar R, and Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404: 91–94.

    CAS  PubMed  Google Scholar 

  • Vielle-Calzada J-P, Moore JM, Gagliano WB, and Grossniklaus U (1998) Altering sexual development in Arabidopsis. J. Plant Biol. 41: 71–83.

    Google Scholar 

  • Vollbrecht E, and Hake S (1995) Deficiency analysis of female gametogenesis in maize. Dev Genet 16: 44–63.

    Google Scholar 

  • von Besser K, Frank AC, Johnson MA, and Preuss D (2006) Arabidopsis HAP2 ( GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133: 4761–4769.

    Google Scholar 

  • von Wangenheim KH, and Peterson HP (2004) Aberrant endosperm development in interploidy crosses reveals a timer of differentiation. Dev Biol 270: 277–289.

    Google Scholar 

  • Walbot V, and Evans MMS (2003) Unique features of the plant life cycle and their consequences. Nat Rev Genet 4: 369–379.

    CAS  PubMed  Google Scholar 

  • Wang FH (1947) Embryological development of inbred and hybrid Zea mays I. Am J Bot 3 4 : 113–125.

    Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128: 4289–4299.

    CAS  PubMed  Google Scholar 

  • Xu Z, and Dooner HK (2006) The maize Aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 172: 1251–1261.

    CAS  PubMed  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, (2000) Mutations in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12: 2367–2381.

    CAS  PubMed  Google Scholar 

  • Yang H, Kaur N, Kiriakopolos S, and Mc Cormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta 224: 1004–1014.

    CAS  PubMed  Google Scholar 

  • Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139: 1421–1432.

    CAS  PubMed  Google Scholar 

  • Yu HJ, Hogan P, and Sundaresan V (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139: 1853–1869.

    CAS  PubMed  Google Scholar 

  • Zhang Z, and Russell SD (1995) Sperm cell surface characteristics of flowering plants in relation to transport in the embryo sac (abstract). American Society for Cell Biology Annual Meeting (Suppl), p. 21.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Evans, M.M.S., Grossniklaus, U. (2009). The Maize Megagametophyte. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_5

Download citation

Publish with us

Policies and ethics