Skip to main content

The Maize Floral Transition

  • Chapter
Handbook of Maize: Its Biology

Abstract

The floral transition is a critical developmental change in a plant's life cycle that is marked by the switch from vegetative to reproductive growth. The transition is induced by leaf-derived signals that translocate through the phloem to the shoot apex where the shoot apical meristem is reprogrammed to adopt a floral fate. In maize, this occurs when the vegetative shoot meristem ceases leaf initiation and becomes consumed in the production of the tassel inflorescence primordium. Upper axillary shoot meristems are converted into ear inflorescence primordia soon after this period. This review highlights current understanding of the genes and molecular mechanisms regulating the floral transition in maize. We relate flowering control in maize to its progenitor teosinte, provide an overview of the quantitative nature of flowering in maize germplasm and describe what is currently known about the molecular components of the maize floral transition genetic network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex . Science 309, 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, C.J., Dwyer, L.M., Stewart, D.W., Dugas, J.A., and Bonn, P. (2000) . Distribution of carbohydrate during grain-fill in leafy and normal maize hybrids . Can J Plant Sci 80, 87–95.

    Google Scholar 

  • Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes . Plant Cell 15, 2730–2741.

    Article  CAS  PubMed  Google Scholar 

  • Austin, D.F., Lee, M., and Veldboom, L.R. (2001). Genetic mapping in maize with hybrid progeny across testers and generations: Plant height and flowering . TAG Theor Appl Genet 102, 163–176.

    Article  CAS  Google Scholar 

  • Beadle, G.W. (1939). Teosinte and the origin of maize. J Hered 30, 245–247.

    Google Scholar 

  • Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Bomblies, K., and Doebley, J.F. (2006). Pleiotropic effects of the duplicate maize FLORICAULA/ LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication . Genetics 172, 519–531.

    Article  CAS  PubMed  Google Scholar 

  • Camus-Kulandaivelu, L., Veyrieras, J.-B., Madur, D., Combes, V., Fourmann, M., Barraud, S., Dubreuil, P., Gouesnard, B., Manicacci, D., and Charcosset, A. (2006). Maize adaptation to temperate climate: Relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172, 2449–2463.

    Article  CAS  PubMed  Google Scholar 

  • Chardon, F., Virlon, B., Moreau, L., Falque, M., Joets, J., Decousset, L., Murigneux, A., and Charcosset, A. (2004). Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome . Genetics 168, 2169–2185.

    Article  CAS  PubMed  Google Scholar 

  • Chardon, F., Hourcade, D., Combes, V., and Charcosset, A. (2005). Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8 . Theor Appl Genet 112, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Colasanti, J., Yuan, Z., and Sundaresan, V. (1998). The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize . Cell 93, 593–603.

    Article  CAS  PubMed  Google Scholar 

  • Colasanti, J., Tremblay, R., Wong, A.Y.M., Coneva, V., Kozaki, A., and Mable, B.K. (2006). The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants . BMC Genomics 7, 1–15.

    Article  Google Scholar 

  • Coneva, V. , Zhu, T., and Colasanti, J. (2007). Expression differences between normal and indeter-minate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Journal of Experimental Botany, 58, 3679–3693.

    Article  CAS  PubMed  Google Scholar 

  • Corbesier, L., Lejeune, P., and Bernier, G. (1998). The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: Comparison between the wild type and a starchless mutant . Planta (Berlin) 206, 131–137.

    Article  CAS  Google Scholar 

  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007) . FT protein movement contributes to longdistance signaling in floral induction of Arabidopsis. Science 316, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  • Costa, C., Dwyer, L.M., Stewart, D.W., and Smith, D.L. (2002). Nitrogen effects on grain yield and yield components of leafy and nonleafy maize genotypes . Crop Sci 42, 1556–1563.

    Article  Google Scholar 

  • Danilevskaya, O.N., Meng, X., Hou, Z., Ananiev, E.V., Simmons, C.R. (2008). A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize. Plant Physiol. 146, 250–264.

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya, O.N., Meng, X., Selinger, D.A., Deschamps, S., Hermon, P. et al. (2008). Involvement of the MADS-Box Gene ZMM4 in Floral Induction and Inflorescence Development in Maize. Plant Physiol. 147, 2054–2069.

    Article  CAS  PubMed  Google Scholar 

  • Dijak, M., Modarres, A.M., Hamilton, R.I., Dwyer, L.M., Stewart, D.W., Mather, D.E., and Smith, D.L. (1999). Leafy reduced-stature maize hybrids for short-season environments. Crop Sci 39 1106–1110.

    Article  Google Scholar 

  • Doebley, J. (2004). The genetics of maize evolution. Annu Rev Genet 38, 37–59.

    Article  CAS  PubMed  Google Scholar 

  • Emerson, R.A. (1924). Control of flowering in teosinte. J Hered 15, 41–48.

    Google Scholar 

  • Galinat, W.C., and Naylor, A.W. (1951). Relation of photoperiod to inflorescence proliferation in Zea mays L . Am J Bot 38, 38–47.

    Article  Google Scholar 

  • Garner, W.W., and Allard, H.A. (1920). Effect of the relative effect of day and night and other factors of the environment on growth and reproduction in plants . J Agric Res 18, 553–606.

    Google Scholar 

  • Irish, E., and Jegla, D. (1997). Regulation of extent of vegetative development of the maize shoot meristem. Plant J 11, 63–71.

    Article  Google Scholar 

  • Irish, E.E., and Nelson, T.M. (1991). Identification of multiple stages in the conversion of maize meristems from vegetative to floral development . Dev 112, 891–898.

    Google Scholar 

  • Kozaki, A., Hake, S., and Colasanti, J. (2004). The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties . Nucleic Acids Res 32, 1710–1720.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M.-K., Belanger, H., Lee, Y.-J., Varkonyi-Gasic, E., Taoka, K.-I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J., and Lucas, W.J. (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19, 1488–1506.

    Article  CAS  PubMed  Google Scholar 

  • Malcomber, S.T., Preston, J.C., Reinheimer, R., Kossuth, J., and Kellogg, E.A. (2006). Developmental gene evolution and the origin of grass inflorescence diversity . Adv Bot Res 44 426–481.

    Article  Google Scholar 

  • Muszynski, M.G., Dam, T., Li, B., Shirbroun, D.M., Hou, Z., Bruggemann, E., Archibald, R., Ananiev, E.V., and Danilevskaya, O.N. (2006). Delayed flowering1 encodes a basic Leucine Zipper protein that mediates floral inductive signals at the shoot apex in maize . Plant Physiol 142, 1523–1536.

    Article  CAS  PubMed  Google Scholar 

  • Neuffer, M.G., Coe, E.H., and Wessler, S.R. (1997). Mutants of Maize. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press .

    Google Scholar 

  • Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T., and Nakamura, K. (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis . Plant Physiol 127, 252–261.

    Article  CAS  PubMed  Google Scholar 

  • Poethig, R.S. (1990). Phase-change and the regulation of shoot morphogenesis in plants. Science 250, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Salvi, S., Tuberosa, R., Chiapparino, E., Maccaferri, M., Veillet, S., van Beuningen, L., Isaac, P., Edwards, K., and Phillips, R.L. (2002). Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize . Plant Mol Biol 48, 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K.A., Meeley, R., Ananiev, E.V., Svitashev, S., Bruggemann, E., Li, B., Hainey, C.F., Radovic, S., Zaina, G., Rafalski, J.A., Tingey, S.V., Miao, G.-H., Phillips, R.L., and Tuberosa, R. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize . PNAS 104, 11376–11381.

    Article  CAS  PubMed  Google Scholar 

  • Shaver, D.L. (1983). Genetics and breeding of maize with extra leaves above the ear. In Proceedings of the 38th Annual Corn and Sorghum Industry Research Conference (Chicago, IL: American Seed Trade Association, Washington, DC), pp. 161–180.

    Google Scholar 

  • Sheehan, M.J., Kennedy, L.M., Costich, D.E., and Brutnell, T.P. (2007). Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize . Plant J 49 338–353.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, W.R. (1946). Inheritance of indeterminate growth in maize. J Hered 37, 61–64.

    CAS  PubMed  Google Scholar 

  • Subedi, K.D., and Ma, B.L. (2005a). Ear position, leaf area, and contribution of individual leaves to grain yield in conventional and leafy maize hybrids . Crop Sci 45, 2246–2257.

    Article  Google Scholar 

  • Subedi, K.D., and Ma, B.L. (2005b). Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci 45, 740–747.

    Article  CAS  Google Scholar 

  • Subedi, K.D., Ma, B.L., and Smith, D.L. (2006). Response of a leafy and non-leafy maize hybrid to population densities and fertilizer nitrogen levels . Crop Sci 46, 1860–1869.

    Article  Google Scholar 

  • Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D., and Buckler, E.S. (2001). Dwarf8 polymorphisms associate with variation in flowering time . Nat Genet 28, 286–289.

    Article  CAS  PubMed  Google Scholar 

  • Tollenaar, M., and Hunter, R.B. (1983). A photoperiod and temperature sensitive period for leaf number of maize . Crop Sci 23, 457–460.

    Article  Google Scholar 

  • Veldboom, L.R., Lee, M., and Woodman, W.L. (1994). Molecular marker-facilitated studies in an elite maize population: I . Linkage analysis and determination of QTL for morphological traits. TAG Theor Appl Genet 88, 7–16.

    CAS  Google Scholar 

  • Vladutu, C., McLaughlin, J., and Phillips, R.L. (1999). Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures . Genetics 153, 993–1007.

    CAS  PubMed  Google Scholar 

  • Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005) . Integration of spatial and temporal information during floral induction in Arabidopsis . Science 309, 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A.Y.M., and Colasanti, J. (2007). Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition . J Exp Bot 58, 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.-M., Mao, Y., Xie, C., Smith, H., Luo, L., and Xu, S. (2005). Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169, 2267–2275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mei Guo, Olga Danilevskaya and Evgueni Ananiev for meristem images and Olga Danilevskaya and Carl Simmons for sharing data prior to publication.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Colasanti, J., Muszynski, M. (2009). The Maize Floral Transition. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_3

Download citation

Publish with us

Policies and ethics