Skip to main content

Development of the Inflorescences

  • Chapter
Handbook of Maize: Its Biology

Abstract

The maize tassel and ear are complex structures that arise from a shared program of development involving a number of meristem identities and fates, yet emerge as distinct inflorescences that bear exclusively male and female flowers, respectively. Careful phenotypic and genetic studies of mutants that perturb meristem initiation, size, determinacy and identity or pathways of organogenesis such as sex determination, are elaborating the intricacies of these developmental programs by providing important insights into the underlying genes and gene interactions. Our understanding at the molecular level includes information from expression patterns of cloned genes coupled with knowledge of the gene products they encode and interact with, coalescing into molecular bases for the mechanisms underlying the formation of these remarkable structures. These studies show that some mechanisms are at least partially conserved with those elucidated in other model systems such as Arabidopsis, but many others are unique to the grasses. Permeating advances in our understanding of the maize inflorescence is a rich collection of mutants, some identified at the turn of the last century and new ones recorded in databases of productive EMS- and transposon-based screens, constituting a key genetic resource that will provide fertile ground for maize geneticists and developmental biologists for years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F., and Schmidt, R.J. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5, 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Bensen, R.J., Johal, G.S., Crane, V.C., Tossberg, J.T., Schnable, P.S., Meeley, R.B., and Briggs, S.P. (1995). Cloning and characterization of the maize An1 gene. Plant Cell 7, 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal 3, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Bomblies, K., Wang, R.L., Ambrose, B.A., Schmidt, R.J., Meeley, R.B., and Doebley, J. (2003). Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130, 2385–2395.

    Article  CAS  PubMed  Google Scholar 

  • Bommert, P., Satoh-Nagasawa, N., Jackson, D., and Hirano, H.Y. (2005a). Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiology 46, 69–78.

    Article  CAS  Google Scholar 

  • Bommert, P., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M., Jackson, D., Hake, S., and Werr, W. (2005b). Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132, 1235–1245.

    Article  CAS  Google Scholar 

  • Bonnett, O.T. (1940). Development of the staminate and pistillate inflorescences of sweet corn. Journal of Agricultural Research 60, 25–38.

    Google Scholar 

  • Bonnett, O.T. (1948). Ear and tassel development in maize. Annals of the Missouri Botanical Garden 35, 269–287.

    Article  Google Scholar 

  • Bortiri, E., and Hake, S. (2007). Flowering and determinacy in maize. Journal of Experimental Botany 58, 909–916.

    Article  CAS  PubMed  Google Scholar 

  • Bortiri, E., Jackson, D., and Hake, S. (2006a). Advances in maize genomics: the emergence of positional cloning. Current Opinion in Plant Biology 9, 164–171.

    Article  CAS  Google Scholar 

  • Bortiri, E., Chuck, G., Vollbrecht, E., Rocheford, T., Martienssen, R., and Hake, S. (2006b). ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18, 574–585.

    Article  CAS  Google Scholar 

  • Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 (Suppl), S18–31.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1991). Genetic interactions among floral homeotic genes in Arabidopsis. Development 112, 1–20.

    CAS  PubMed  Google Scholar 

  • Calderon-Urrea, A., and Dellaporta, S.L. (1999). Cell death and cell protection genes determine the fate of pistils in maize. Development 126, 435–441.

    CAS  PubMed  Google Scholar 

  • Chardon, F., Virlon, B., Moreau, L., Falque, M., Joets, J., Decousset, L., Murigneux, A., and Charcosset, A. (2004). Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168, 2169–2185.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P.C., Greyson, R.I., and Walden, D.B. (1983). Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. American Journal of Botany 70, 450 – 462.

    Article  Google Scholar 

  • Chuck, G., Meeley, R., and Hake, S. (1998). The control of maize spikelet meristem identity by the APETALA-2 -like gene indeterminate spikelet1. Genes & Development 12, 1145–1154.

    Article  CAS  Google Scholar 

  • Chuck, G., Muszynski, M., Kellogg, E., Hake, S., and Schmidt, R.J. (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298, 1238–1241.

    Article  CAS  PubMed  Google Scholar 

  • Chuck, G., Cigan, A.M., Saeteurn, K., and Hake, S. (2007a). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics 39, 544 – 549.

    Article  CAS  Google Scholar 

  • Chuck, G., Meeley, R., Irish, E., Sakai, H., and Hake, S. (2007b). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics advanced online publication.

    Google Scholar 

  • Clark, S.E. (2001). Cell signalling at the shoot meristem. Nature Reviews 2, 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Coe, E.H., Neuffer, M.G., and Hosington, D.A. (1988). The genetics of corn. In Corn and Corn Improvement, ed. by G.F. Sprague and J.W. Dudley (Madison, WI: American Society of Agronomy), pp. 81–258.

    Google Scholar 

  • Colasanti, J., Yuan, Z., and Sundaresan, V. (1998). The Indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93, 593–603.

    Article  CAS  PubMed  Google Scholar 

  • Colasanti, J., Tremblay, R., Wong, A.Y., Coneva, V., Kozaki, A., and Mable, B.K. (2006). The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7, 158.

    Article  PubMed  Google Scholar 

  • Collins, G.B. (1919). Structure of the maize ear as indicated in Zea-Euchlaena hybrids. Journal of Agricultural Research 17, 127–135.

    Google Scholar 

  • Colombo, L., Marziani, G., Masiero, S., Wittich, P.E., Schmidt, R.J., Gorla, M.S., and Pe, M.E. (1998). BRANCHED SILKLESS mediates the transition from spikelet to floral meristem during Zea mays ear development. The Plant Journal 16, 355–363.

    Article  CAS  Google Scholar 

  • Cutler, H.C., and Cutler, M.C. (1948). Studies on the structure of the maize plant. Annals of the Missouri Botanical Garden 35, 301–316.

    Article  Google Scholar 

  • Dellaporta, S.L., and Calderon-Urrea, A. (1994). The sex determination process in maize. Science 266, 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • DeLong,A., Calderon-Urrea,A.,andDellaporta, S.L. (1993).Sex determinationgeneTASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757–768.

    Article  CAS  PubMed  Google Scholar 

  • Doebley, J., and Lukens, L. (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti, A., Zhao, Q., Kyozuka, J., Meeley, R.B., Ritter, M.K., Doebley, J.F., Pe, M.E., and Schmidt, R.J. (2004). The role of barren stalk1 in the architecture of maize. Nature 432, 630–635.

    Article  CAS  PubMed  Google Scholar 

  • Giulini, A., Wang, J., and Jackson, D. (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430, 1031–1034.

    Article  CAS  PubMed  Google Scholar 

  • Harberd, N.P., and Freeling, M. (1989). Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827–838.

    CAS  PubMed  Google Scholar 

  • Hubbard, L., McSteen, P., Doebley, J., and Hake, S. (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162, 1927–1935.

    CAS  PubMed  Google Scholar 

  • Iltis, H. (1983). From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886–894.

    Article  CAS  PubMed  Google Scholar 

  • Irish, E.E. (1996). Regulation of sex determination in maize. BioEssays 18, 363–369.

    Article  Google Scholar 

  • Irish, E.E. (1997). Class II tassel seed mutations provide evidence for multiple types of inflorescence meristems in maize (Poaceae). American Journal Botany 84, 1502–1515.

    Article  Google Scholar 

  • Irish, E.E., Langdale, J.A., Nelson, T.M. (1994). Interactions between tassel seed genes and other sex determining genes in maize. Developmental Genetics 15, 155–171.

    Article  Google Scholar 

  • Kaplinsky, N.J., and Freeling, M. (2003). Combinatorial control of meristem identity in maize inflorescences. Development 130, 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  • Kellogg, E.A. (2000a). Molecular and Morphological Evolution in the Andropogoneae. In Grasses: Systematics and Evolution, ed. by S. Jacobs and J. Everett (Melbourne : CSIRO).

    Google Scholar 

  • Kellogg, E.A. (2000b). THE GRASSES: a Case Study in Macroevolution. Annual Review of Ecology and Systematics 31, 217–238.

    Article  Google Scholar 

  • Kellogg, E.A. (2007). Floral displays: genetic control of grass inflorescences. Current Opinion in Plant Biology 10, 26–31.

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G., and Hake, S. (1997). Loss of function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124, 3045–3054.

    CAS  PubMed  Google Scholar 

  • Kiesselbach, T.A. (1949). The structure and reproduction of corn. University of Nebraska, College of Agriculture, Agricultural Experimental Station Research Bulletin 161, 1–96.

    Google Scholar 

  • Kobayashi, Y., and Weigel, D. (2007). Move on up, it's time for change–mobile signals controlling photoperiod-dependent flowering. Genes & Development 21, 2371–2384.

    Article  CAS  Google Scholar 

  • Kozaki, A., Hake, S., and Colasanti, J. (2004). The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Research 32, 1710–1720.

    Article  CAS  PubMed  Google Scholar 

  • Laudencia-Chingcuanco, D., and Hake, S. (2002). The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development 129, 2629–2638.

    CAS  PubMed  Google Scholar 

  • Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E.S., and Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165, 2117–2128.

    CAS  PubMed  Google Scholar 

  • Malcomber, S.T., Preston, J.C., and Kellogg, E.A. (2006). Developmental gene evolution and the origin of grass inflorescence diversity. Advances in Botanical Research 44, 423–479.

    Article  Google Scholar 

  • Mangelsdorf, P.C. (1945). The origin and nature of the maize ear. Botanical Museum Leaflets, Harvard University 12, 33–75.

    Google Scholar 

  • McSteen, P., and Hake, S. (2001). barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128, 2881–2891.

    CAS  PubMed  Google Scholar 

  • McSteen, P., and Leyser, O. (2005). Shoot branching. Annual Review of Plant Biology 56 353–374.

    Article  CAS  PubMed  Google Scholar 

  • McSteen, P., Laudencia-Chingcuanco, D., and Colasanti, J. (2000). A floret by any other name: control of meristem identity in maize. Trends in Plant Science 5, 61–66.

    Article  CAS  PubMed  Google Scholar 

  • McSteen, P., Malcomber, S., Skirpan, A., Lunde, C., Wu, X., Kellogg, E., and Hake, S. (2007). barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiology 144, 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  • Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F., and Schmidt, R.J. (1996). Diversification of C-function activity in maize flower development. Science 274, 1537–1540.

    Article  CAS  PubMed  Google Scholar 

  • Muszynski, M.G., Dam, T., Li, B., Shirbroun, D.M., Hou, Z., Bruggemann, E., Archibald, R., Ananiev, E.V., and Danilevskaya, O.N. (2006). delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiology 142, 1523–1536.

    Article  CAS  PubMed  Google Scholar 

  • Neuffer, M., Coe, E., and Wessler, S. (1997). Mutants of Maize (Plainview: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Nickerson, N.H., and Dale, E.E. (1955). Tassel modifications in Zea mays. Annals of the Missouri Botanical Garden 42, 195–211.

    Article  Google Scholar 

  • Pan, Y.B., and Peterson, P.A. (1992). ba3: a new barrenstalk mutant in Zea mays. Journal of Genetics and Breeding 46, 291–294.

    Google Scholar 

  • Parkinson, S.E., Gross, S.M., and Hollick, J.B. (2007). Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Developmental Biology 308, 462–473.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Phinney, B.O. (1956). Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proceedings of the National Academy of Science, USA 42, 185–189.

    Article  CAS  Google Scholar 

  • Phinney, B.O., and West, C.A. (1960). Gibberellins and the growth of flowering plants. In Developing Cell Systems and Their Control, ed. by D. Rudnick(New York: Ronald Press), pp. 71–92.

    Google Scholar 

  • Ritter, M.K., Padilla, C.M., and Schmidt, R.J. (2002). The maize mutant barren stalk1 is defective in axillary meristem development. American Journal of Botany 89, 203–210.

    Article  Google Scholar 

  • Satoh-Nagasawa, N., Nagasawa, N., Malcomber, S., Sakai, H., and Jackson, D. (2006). A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F. (1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5, 729–737.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan, W.F. (1988). Maize developmental genetics: genes of morphogenesis. Annual Review of Genetics 22, 353–385.

    Article  CAS  PubMed  Google Scholar 

  • Spray, C., Phinney, B.O., Gaskin, P., Gilmour, S.J., and MacMillan, J. (1984). Internode length in Zea mays L. Planta 160, 464–468.

    Article  CAS  Google Scholar 

  • Steeves, T.A., and Sussex, I.M. (1989). Patterns in Plant Development (Cambridge: Cambridge University Press).

    Book  Google Scholar 

  • Taguchi-Shiobara, F., Yuan, Z., Hake, S., and Jackson, D. (2001). The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes & Development 15, 2755–2766.

    Article  CAS  Google Scholar 

  • Upadyayula, N., da Silva, H.S., Bohn, M.O., and Rocheford, T.R. (2006). Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theory of Applied Genetics 112, 592–606.

    Article  CAS  Google Scholar 

  • Veit, B., Briggs, S., Schmidt, R., Yanofsky, M., and Hake, S. (1998). Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393, 166–168.

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht, E., Reiser, L., and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1 Development 127, 3161–3172.

    CAS  Google Scholar 

  • Vollbrecht, E., Springer, P.S., Goh, L., Buckler, E.S., and Martienssen, R. (2005). Architecture of floral branch systems in maize and related grasses. Nature 436, 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J., Waters, C.A., and Freeling, M. (1998). The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development 12, 208–218.

    Article  CAS  Google Scholar 

  • Weigel, D., and Jurgens, G. (2002). Stem cells that make stems. Nature 415, 751–754.

    CAS  PubMed  Google Scholar 

  • Whipple, C.J., and Schmidt, R.J. (2006). Genetics of grass flower development. Advances in Botanical Research 44, 386–425.

    Article  Google Scholar 

  • Williams, L., and Fletcher, J.C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology 8, 582–586.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., and McSteen, P. (2007). The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). American Journal of Botany 94, 1745–1755.

    Article  CAS  Google Scholar 

  • Zhao, W., Canaran, P., Jurkuta, R., Fulton, T., Glaubitz, J., Buckler, E., Doebley, J., Gaut, B., Goodman, M., Holland, J., Kresovich, S., McMullen, M., Stein, L., and Ware, D. (2006). Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Research 34, D752–757.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge contributions by colleagues and lab members (past and present) in the form of stimulating discussions, and toward images and figures appearing in this chapter. Special thanks to G. Chuck for Fig. 6a, D. Hall for work on Fig. 2g, h. We also acknowledge the generous support of the National Science Foundation and the U.S. Department of Agriculture CSREES.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vollbrecht, E., Schmidt, R.J. (2009). Development of the Inflorescences. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_2

Download citation

Publish with us

Policies and ethics