Skip to main content

Responses to Oxygen Deprivation and Potential for Enhanced Flooding Tolerance in Maize

  • Chapter
Handbook of Maize: Its Biology

Abstract

Although plants release oxygen as a byproduct during the process of photosynthesis, they are obligatory aerobes requiring the gas for their survival, growth and productivity. Oxygen limitation, the predominant stress in flooded plants, dramatically affects the gene expression, development and productivity of maize. Serious efforts are being made to improve flooding-tolerance of the crop across the globe. Here, we present an overview of gene expression changes in response to oxygen deprivation. We also discuss the early cellular events that lead to altered gene expression and how the sub-cellular responses, in turn, may shape the organismal responses to flooding stress. Complete lack of O2 (anoxia) leads to an immediate cessation of protein synthesis followed by a selective synthesis of about twenty anaerobic proteins in maize seedlings. Among these are enzymes involved in glycolytic-fermentative pathways needed for rescuing the cell from the resulting energy crisis and other genes that appear to function in longer-term responses, such as aerenchyma formation and root tip death. Although ‘aerobic’ proteins continue to be synthesized under hypoxia, the majority of the ‘anaerobic’ genes are transcriptionally and translationally induced even by a partial depletion of oxygen (hypoxia). This indicates the presence of an exquisite oxygen-sensing system in plants that may be optimizable for enhanced tolerance. Research in this area has shown that transient cytosolic Ca2+ perturbations are essential to trigger adaptive gene expression. Although glycolysis/fermentation enzymes are necessary for adaptation, their activities do not correlate with flooding tolerance. Instead, tolerance to prolonged stress seems to depend on the capacity to quickly restore cellular ionic homoeostasis and whole plant modifications for recouping O2 supply. Current genetic or molecular breeding efforts are aimed at exploiting the genetic variability for flooding tolerance available in maize and its wild relatives. In addition, we suggest novel molecular strategies based on our understanding of early events and molecular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, A. and Grover, A. (2005) Isolation and transcription profiling of low-O2 stress-associated cDNA clones from the flooding-stress-tolerant FR13A rice genotype, Ann. Bot. 96, 831–844.

    CAS  PubMed  Google Scholar 

  • Albrecht, G. and Mustroph, A. (2003) Localization of sucrose synthase in wheat roots: Increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia, Planta 217, 252–260.

    CAS  PubMed  Google Scholar 

  • Albrecht, G., Mustroph, A. and Fox, T.C. (2004) Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots, Physiol. Plant 120, 93–105.

    CAS  PubMed  Google Scholar 

  • Alves, J.D., Magalhães, M.M., Goulart, P.F.P., Dantas, B.F., Gouvêa, J.A., Purcino, R.P., Magalhães, P.C., Fries, D.D., Livramento, D.E., Meyer, L.E., Seiffert, M. and Silveira, T. (2002) Mecanismos de tolerância da variedade de milho Saracura (BRS 4154) ao alagamento, Revista Brasileira de Milho e Sorgo, Sete Lagoas, 1, 41–52.

    Google Scholar 

  • Amor, Y., Haigler, C., Johnson, S., Wainscott, M. and Delmer, D.P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants, Proc. Natl. Acad. Sci. USA 92, 9353–9357.

    CAS  PubMed  Google Scholar 

  • Bailey-Serres, J. and Dawe, K. (1996) Both 5′ and 3′ Sequences of maize ADH1 mRNA are required for enhanced translation under low-oxygen conditions, Plant Physiol. 112, 685–695.

    CAS  PubMed  Google Scholar 

  • Bailey-Serres, J. and Freeling, M. (1990) Hypoxic stress-induced changes in ribosomes of maize seedling roots, Plant Physiol. 94, 1237–1243.

    CAS  PubMed  Google Scholar 

  • Bailey-Serres, J., Kloeckener-Gruissem, B. and Freeling, M. (1988) Genetic and molecular approaches to the study of the anaerobic response and tissue specific gene expression in maize, Plant Cell Environ. 11, 351–357.

    CAS  Google Scholar 

  • Baxter-Burrill, A., Yang, Z., Springer, P.S. and Bailey-Serres, J. (2002) RopGAP4-dependent rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance, Science 296, 2026–2028.

    Google Scholar 

  • Bird, R.McK(2000) A remarkable new teosinte from Nicaragua: Growth and treatment of progeny, Maize Gen. Coop. Newsl. 74, 58–59.

    Google Scholar 

  • Bouny, J.M. and Saglio, P.H. (1996) Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pre-treatment, Plant Physiol. 111, 187–97.

    CAS  PubMed  Google Scholar 

  • Bozhkov, P. and Jansson, C. (2007) Autophagy and cell-death proteases in plants: Two wheels of a funeral cart, Autophagy 3, 136–138.

    CAS  PubMed  Google Scholar 

  • Branco-Price, C., Kawaguchi, R., Ferreira, R.B. and Bailey-Serres, J. (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation, Ann. Bot. (Lond) 96, 647–660.

    CAS  Google Scholar 

  • Branco-Price, C., Chang, R., Ferreira, R. and Bailey-Serres, J. (2006) Mitochondria-initiated signaling in Arabidopsis under low oxygen, Plant Biol. 2006, Abs # P36049.

    Google Scholar 

  • Carroll, A.D., Fox, G.G., Laurie, S., Phillips, R., Ratcliffe, R.G. and Stewart, G.R. (1994) Ammonium assimilation and the role of γ-Aminobutyric acid in pH homeostasis in carrot cell suspensions, Plant Physiol. 106, 513–520.

    CAS  PubMed  Google Scholar 

  • Chang, W.W.P., Huang, L., Shen, M., Webster, C., Burlingame, A.L. and Roberts, J.K.M. (2001) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry, Plant Physiol. 122, 295–318.

    Google Scholar 

  • Choi, W-.G. and Roberts, D.M. (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress, J. Biol. Chem. 282, 24209–24218.

    CAS  PubMed  Google Scholar 

  • Chourey, P.S. (2006) Nomenclature of sucrose synthase genes and the gene products, Maize Genet. News Lett. 80, 11.

    Google Scholar 

  • Chourey, P.S., Taliercio, E.W., Carlson, S.J. and Ruan, Y.-L. (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis, Mol. Gen. Genet. 259, 88–96.

    CAS  PubMed  Google Scholar 

  • Chung, H.-J. and Ferl,R.J. (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment, Plant Physiol. 121, 429–436.

    CAS  PubMed  Google Scholar 

  • de Vetten, N.C. and Ferl, R.J. (1995) Characterization of a maize G-box binding factor that is induced by hypoxia, Plant J. 7, 589–601.

    PubMed  Google Scholar 

  • Dennis, E.S., Walker, J.C., Llewellyn, D.J., Ellis, J.G., Singh, K., Tokuhisa, J.G., Wolstenholme, D.R. and Peacock, W.J. (1989) The response to anaerobic stress: Transcriptional regulation of genes for anaerobically induced proteins, In: Environmental Stress in Plants, Cherry J.H.; Ed., New York: Springer, pp. 231–245.

    Google Scholar 

  • Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manac'h, N., Rivoal, J. and Hill, R.D. (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress, Plant J. 35, 763–770.

    CAS  PubMed  Google Scholar 

  • Dordas, C., Hasinoff, B.B., Rivoal, J. and Hill, R.D. (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures, Planta 219, 66–72.

    CAS  PubMed  Google Scholar 

  • Drew, M.C., Jackson, M.B. and Giffard, S. (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L., Planta 147, 83–88.

    CAS  Google Scholar 

  • Drew, M.C. (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250.

    CAS  PubMed  Google Scholar 

  • Drew, M.C., Saglio, P.H. and Pradet, A. (1985) Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport, Planta 165, 51–58.

    CAS  Google Scholar 

  • Drew, M.C., Cobb, B.G., Johnson, J.R., Andrews, D., Morgan, P.W., Jordan, W. and He, C.J. (1994) Metabolic acclimation of root tips to oxygen deficiency, Ann. Bot. 74, 281–286.

    Google Scholar 

  • Drew, M.C., He, C.-J. and Morgan, P.W. (2000) programmed cell death and aerenchyma formation in roots, Trends Plant Sci. 5, 123–127.

    CAS  PubMed  Google Scholar 

  • Ellis, M.H., Dennis, E.S. and Peacock, W.J. (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic tolerance, Plant Physiol. 119, 57–64.

    CAS  PubMed  Google Scholar 

  • Fankhauser, C., Yeh, K.-C., Lagarias, J.C., Zhang, H., Elic, T.D. and Chory, J. (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis Science 284, 1539–1541.

    CAS  Google Scholar 

  • Ferl, R.J., Brennan, M. and Schwartz, D. (1980) In vitro translation of maize ADH: Evidence for the anaerobic induction of mRNA, Biochem. Genet. 18, 681–691.

    CAS  PubMed  Google Scholar 

  • Fox, G.G., McCallan, N.R. and Ratcliffe, R.G. (1995) Manipulating cytoplasmic pH under anoxia: A critical test of the role of pH in the switch from aerobic to anaerobic metabolism, Planta 195, 324–330.

    CAS  Google Scholar 

  • Fukao, T., Xu, K., Ronald, P.C. and Bailey-Serres, J. (2006) A variable cluster of ethylene responsive-like factors (ERFs) regulates developmental and metabolic acclimation responses to submergence, Plant Cell 18, 2021–2034.

    CAS  PubMed  Google Scholar 

  • Germain, V., Raymond, P. and Ricard, B. (1997) Differential expression of two tomato lactate dehydrogenase genes in response to oxygen deficit, Plant Mol. Biol. 35, 711–721.

    CAS  PubMed  Google Scholar 

  • Gibbs, J., de Bruxelle, D., Armstrong, W. and Greenway, H. (1995) Evidence for anoxic zones in 2–3 mm tips of aerenchymatous maize roots under low O2 supply, Austral J. Plant Physiol. 22, 723–730.

    CAS  Google Scholar 

  • Gunavardena, A.H.L.A.N., Pearce, D.M., Jackson, M.B., Hawes, C.R. and Evans, D.E. (2001) Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize ( Zea mays L.), Planta 212, 205–214.

    Google Scholar 

  • Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M. and Hara-Nishimura, I. (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death, Science 305, 855–858 .

    CAS  PubMed  Google Scholar 

  • He, C.J., Morgan, P.W. and Drew, M.C. (1992) Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during aerenchyma formation, Plant Physiol. 98, 137–142 .

    CAS  PubMed  Google Scholar 

  • Hill, R.D. (1998) What are hemoglobins doing in plants? Can. J. Bot. 76, 707–712.

    CAS  Google Scholar 

  • Huber, J.L.A., Huber, S.C. (1996) Role and regulation of sucrose-phosphate synthase in higher plants, Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 431–444.

    CAS  Google Scholar 

  • Huber, S.C. (2007) Exploring the role of protein phosphorylation in plants: From signalling to metabolism, Biochem. Soc. Trans. 35, 28–32.

    CAS  PubMed  Google Scholar 

  • Huber, S.C., Huber, J.L., Liao, P.C., Gage, D.A., McMichael, R.W., Jr., Chourey, P.S., Hannah, L.C. and Koch, K.E. (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance, Plant Physiol. 112, 793–802.

    CAS  PubMed  Google Scholar 

  • Hunt, P.W., Klok, E.J., Trevaskis, B., Watts, R.A., Ellis, M.H., Peacock, W.J. and Dennis, E.S. (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 99, 17197–17202.

    CAS  PubMed  Google Scholar 

  • Iltis, H.H. and Benz, B.F. (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua, Novon 10, 382–390.

    Google Scholar 

  • Ismond, K.P., Dolferus, R., De Pauw, M., Dennis, E.S. and Good, A.G. (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway, Plant Physiol. 132, 1292–1302.

    CAS  PubMed  Google Scholar 

  • Johnson, J., Cobb, B.G. and Drew, M.C. (1989) Hypoxic induction of anoxia tolerance in root tips of Zea mays, Plant Physiol. 91, 837–841.

    CAS  PubMed  Google Scholar 

  • Johnson, J.R., Cobb, J.B. and Drew, M.C. (1994) Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L., Plant Physiol. 105, 61–67.

    CAS  PubMed  Google Scholar 

  • Kelley, P.M. and Freeling, M. (1984) Anaerobic expression of maize glucose phosphate isomer-ase, J. Biol. Chem. 259, 673–677.

    CAS  PubMed  Google Scholar 

  • Kelley, P.M. and Tolan, D.R. (1986) The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones, Plant Physiol. 82, 1076–1080.

    CAS  PubMed  Google Scholar 

  • Kennedy, R.A., Rumpho, M.E. and Fox, T.C. (1992) Anaerobic metabolism in plants, Plant Physiol. 84, 1204–1209.

    Google Scholar 

  • Kim, J., Blackshear, P.J., Johnson, J.D. and McLaughlin, S. (1994) Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromoduli, Biophysics. J. 67, 227–237.

    CAS  Google Scholar 

  • Klok, E.J., Wilson, I.W., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R. and Dennis, E.S. (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures, Plant Cell 14, 2481–2494.

    CAS  PubMed  Google Scholar 

  • Koch, K. (2004) Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development, Curr. Opin. Plant Biol. 7, 235–246.

    CAS  PubMed  Google Scholar 

  • Kuang, A., Crispi, M. and Musgrave, M.E. (1998) Control of seed development in Arabidopsis thaliana by atmospheric oxygen, Plant Cell Environ. 21, 71–78.

    CAS  PubMed  Google Scholar 

  • Lal, S.K., Lee, C. and Sachs, M.M. (1998) Differential regulation of enolase during anaerobiosis in maize, Plant Physiol. 118, 1285–1293.

    CAS  PubMed  Google Scholar 

  • Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A. and Perata, P. (2007) Transcript profiling of the anoxic rice coleoptile, Plant Physiol. 144, 218–231.

    CAS  PubMed  Google Scholar 

  • Laszlo, A. and St Lawrence, P. (1983) Parallel induction and synthesis of PDC and ADH in anoxic maize roots, Mol. Gen. Genet. 192, 110–117.

    CAS  Google Scholar 

  • Lemke-Keyes, C.A. and Sachs, M.M. (1989) Genetic variation for seedling tolerance to anaerobic stress in maize germplasm, Maydica 34, 329–337.

    Google Scholar 

  • Liu, F.L., VanToai, T., Moy, L.P., Bock, G., Linford, L.D. and Quackenbush, J. (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis, Plant Physiol. 137, 1115–1129.

    CAS  PubMed  Google Scholar 

  • Loreti, E., Poggi, A., Novi, G., Alpi, A. and Perata, P. (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia, Plant Physiol. 137, 1130–1138.

    CAS  PubMed  Google Scholar 

  • Manjunath, S. and Sachs, M.M. (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia, Plant Mol. Biol. 33, 97–112.

    CAS  PubMed  Google Scholar 

  • Manjunath, S., Williams, A.J. and Bailey-Serres, J. (1999) Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots, Plant J. 19 21–30.

    CAS  PubMed  Google Scholar 

  • Mano, Y. and Omori, F. (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource, Plant Root 1, 17–21.

    CAS  Google Scholar 

  • Mano, Y., Muraki, M., Fujimori1, M., Takamizo, T. and Kindiger, B. (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte ( Zea mays ssp. huehuetenangensis) seedlings, Euphytica 142, 33–42.

    Google Scholar 

  • Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R.McK. and Loaisiga, C.H. (2006) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings, Plant Soil 281, 269–279.

    CAS  Google Scholar 

  • Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R.McK., Loaisiga, C.H. and Takahashi, H. (2007) QTL mapping of root aerenchyma formation in seedlings of a maize X rare teosinte “ Zea nicaraguensis” cross, Plant Soil 295, 103–113.

    CAS  Google Scholar 

  • Maurel, C., Kado, R.T., Guern, J. and Chrispeels, M.J. (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-tip, EMBO J. 14, 3028–3035.

    CAS  PubMed  Google Scholar 

  • Mohanty, B. and Ong, B.L. (2003) Contrasting effects of submergence in light and dark on pyruvate decarboxylase activity in roots of rice lines differing in submergence tolerance, Ann. Bot. (Lond) 91, 291–300.

    CAS  Google Scholar 

  • Nie, X., Durnin, D.C., Igamberdiev, A.U. and Hill, R.D. (2006) Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression, Planta 223, 542–549.

    CAS  PubMed  Google Scholar 

  • Parentoni, N.P., Gama, E.E.G., Magnavaca, R. and Magalhaes, P.C. (1995) Seleção para tolerância ao encharcamento em milho ( Zea mays L.), In: Simposio Internacional Sobre Estresse Ambiental, 1., 1992, Belo Horizonte. O milho em perspectiva: anais. Sete Lagoas : EMBRA/ PACNPMS/CIMMYT/UNDP, pp. 433–439.

    Google Scholar 

  • Paul, A.-L. and Ferl, R.J. (1991) Adh1 and Adh2 regulation, Maydica 36, 129–134.

    Google Scholar 

  • Perez-Mendez, A., Aguilar, R., Briones, E. and Sanchez De, J.E. (1993) Characterization of ribos-omal protein phosphorylation in maize axes during germination, Plant Sci. 94, 71–79.

    CAS  Google Scholar 

  • Peschke, V.M. and Sachs, M.M. (1994) Characterization and expression of anaerobically induced maize transcripts, Plant Physiol. 104, 387–394.

    CAS  PubMed  Google Scholar 

  • Qiu, F., Zheng, Y., Zhang, Z. and Xu, S. (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize, Ann. Bot. 99, 1067–1081.

    PubMed  Google Scholar 

  • Quebedeaux, B. and Hardy, R.W.F. (1975) Reproductive growth and dry matter production of Glycine max (L.) Merr. in response to oxygen concentration, Plant Physiol. 55 102–107.

    CAS  PubMed  Google Scholar 

  • Quimio, C.A., Torrizo, L.B., Setter, T.L., Ellis, M., Grover, A., Abrigo, E.M., Oliva, N.P., Ella, E.S., Carpena, A.L. and Ito, O. (2000) Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase, J. Plant Physiol. 156, 516–521.

    CAS  Google Scholar 

  • Rashotte, A.M., DeLong, A. and Muday, G.K. (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root elongation, Plant Cell 13, 1683–1697.

    CAS  PubMed  Google Scholar 

  • Ratcliffe, R.G. (1997) In vivo NMR studies of the metabolic responses of plant tissues to anoxia, Ann. Bot. 79(Suppl A), 39–48.

    CAS  Google Scholar 

  • Ricard, B., Van Toai, T., Chourey, P. and Saglio, P. (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant, Plant Physiol. 116, 1323–1331.

    CAS  PubMed  Google Scholar 

  • Rivoal, J. and Hanson, A.D. (1994) Metabolic control of anaerobic glycolysis: Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion, Plant Physiol. 106, 1179–1185.

    CAS  PubMed  Google Scholar 

  • Roberts, J.K.M., Callis, J., Wemmer, D., Walbot, V. and Jardetzky, O. (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia, Proc. Natl. Acad. Sci. USA 81, 3379–3383.

    CAS  PubMed  Google Scholar 

  • Rolletschek, H., Koch, K., Wobus, U. and Borisjuk, L. (2005) Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo, Plant J. 42, 69–83.

    CAS  PubMed  Google Scholar 

  • Rosenzweig, C.E., Tubiello, F., Goldberg, R., Mills, E. and Bloomfield, J. (2002) Increased crop damage in the U.S. from excess precipitation under climate change, Global Environ. Change 12, 197–202.

    Google Scholar 

  • Rowland, L.J. and Strommer, J.N. (1986) Anaerobic treatment of maize roots affects transcription of Adh1 and transcript stability, Mol. Cell Biol. 6, 3368–3372.

    CAS  PubMed  Google Scholar 

  • Ruan, Y.-L., Chourey, P.S., Delmer, D.P. and Perez-Grau, L. (1997) The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed, Plant Physiol. 115, 375–385.

    CAS  PubMed  Google Scholar 

  • Russell, D.A. and Sachs, M.M. (1989) Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family, Plant Cell 1, 793–803.

    CAS  PubMed  Google Scholar 

  • Russell, D.A. and Sachs, M.M. (1992) Protein synthesis in maize during anaerobic and heat stress, Plant Physiol. 99, 615–620.

    CAS  PubMed  Google Scholar 

  • Saab, I.N. and Sachs, M.M. (1995) Complete cDNA and genomic sequence encoding a flooding-responsive gene from maize ( Zea mays L.) homologous to xyloglucan endotransglycosylase Plant Physiol. 108, 439–440.

    CAS  PubMed  Google Scholar 

  • Saab, I.N. and Sachs, M.M. (1996) A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma, Plant Physiol. 112, 385–391.

    CAS  PubMed  Google Scholar 

  • Sachs, M.M. (1993) Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to soil waterlogging, In: NATO ASI Series, Vol. 16: Interacting Stresses on Plants in a Changing Environment, Jackson, M.B. and Black, C.R.; Eds., Berlin: Springer-Verlag, pp. 375–393.

    Google Scholar 

  • Sachs, M.M. (1994) Gene expression in maize during anoxia, In: Stress Induced Gene Expression in Plants, Basra, A.S.; Ed., Chur, Switzerland: Harwood Academic, pp. 87–102.

    Google Scholar 

  • Sachs, M.M. and Freeling, M. (1978) Selective synthesis of alcohol dehydrogenase during anaerobic treatment of maize, Mol. Gen. Genet. 161, 111–115.

    CAS  Google Scholar 

  • Sachs, M.M., Freeling, M. and Okimoto, R. (1980) The anaerobic proteins of maize, Cell 20 761–767.

    CAS  PubMed  Google Scholar 

  • Sachs, M.M., Subbaiah, C.C. and Saab, I.N. (1996) Anaerobic gene expression and flooding tolerance in maize, J. Exp. Bot. 47, 1–15.

    CAS  Google Scholar 

  • Saglio, P.H., Drew, M.C. and Pradet, A. (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays, Plant Physiol. 6, 1–66.

    Google Scholar 

  • Saint-Ges, V., Roby, C., Bligny, R., Pradet, A. and Douce, R. (1991) Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31 P-NMR) and lactate during normoxic and anoxic transitions in maize root tips, Eur. J. Biochem. 200, 477–482.

    CAS  PubMed  Google Scholar 

  • Schwartz, D. (1969) An example of gene fixation resulting from selective advantage in suboptimal conditions, Am. Nat. 103, 479–481.

    Google Scholar 

  • Sedbrook, J.C., Kronebush, P.J., Borisy, C.G., Trewavas, A.J. and Masson, P.H. (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings, Plant Physiol. 111, 243–257.

    CAS  PubMed  Google Scholar 

  • Shelp, B.J., Bown, A.W. and McLean, M.D. (1999) Metabolism and functions of gamma-ami-nobutyric acid, Trends Plant Sci. 4, 446–452.

    PubMed  Google Scholar 

  • Shiao, T.L., Ellis, M.H., Dolferus, R., Dennis, E.S. and Doran, P.M. (2002) Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations, Biotechnol. Bioeng. 77, 455–461.

    CAS  PubMed  Google Scholar 

  • Snedden, W.A., Arazi, T., Fromm, H. and Shelp, B.J. (1995) Calcium/calmodulin regulation of soybean glutamate decarboxylase, Plant Physiol. 108, 543–549.

    CAS  PubMed  Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, E. and Levine, A. (1999) the involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants, Plant Cell 11, 431–443.

    CAS  PubMed  Google Scholar 

  • Springer, B., Werr, W., Starlinger, P., Bennett, D.C., Zokolica, M. and Freeling, M. (1986) The shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein, Mol. Gen. Genet. 205, 461–468.

    CAS  PubMed  Google Scholar 

  • Stroeher, V.L., Maclagan, J.L. and Good, A.G. (1997) Molecular cloning of a Brassica Napus cysteine protease gene inducible by drought and low temperature stress, Physiol. Plant. 101, 389–397.

    CAS  Google Scholar 

  • Subbaiah, C.C. and Sachs, M.M. (2000) Maize cap1 encodes a novel SERCA-type calcium ATPase with a calmodulin-binding domain, J. Biol. Chem. 275, 21678–21687.

    CAS  PubMed  Google Scholar 

  • Subbaiah, C.C. and Sachs, M.M. (2001) Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings, Plant Physiol. 125, 585–594.

    CAS  PubMed  Google Scholar 

  • Subbaiah, C.C. and Sachs, M.M. (2003) Molecular and cellular adaptations of maize to flooding stress, Ann. Bot. 91, 119–127.

    CAS  PubMed  Google Scholar 

  • Subbaiah, C.C., Bush, D.S. and Sachs, M.M. (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension cultured cells, Plant Cell 6, 1747–1762.

    CAS  Google Scholar 

  • Subbaiah, C.C., Zhang, J. and Sachs, M.M. (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings, Plant Physiol. 105, 369–376.

    CAS  Google Scholar 

  • Subbaiah, C.C., Bush, D.S. and Sachs, M.M. (1998) Mitochondrial Contribution to the Anoxic Ca2+ Signal in Maize Suspension-Cultured Cells, Plant Physiol. 118, 759–771.

    CAS  PubMed  Google Scholar 

  • Subbaiah, C.C., Kollipara, K. and Sachs, M.M. (1999) Potential involvement of maize AIP in the anoxia-induced death of the root tip, In: Abstracts of 41st Annual Maize Genetics Conference, Lake Geneva, WI, March 11–14, pp. 98.

    Google Scholar 

  • Subbaiah, C.C., Kollipara, K. and Sachs, M.M. (2000) A Ca2+ -dependent cysteine protease is associated with anoxia-induced root tip death in maize, J. Exp. Bot. 51, 721–730.

    CAS  PubMed  Google Scholar 

  • Subbaiah, C.C., Palaniappan, A., Duncan, K., Rhoads, D.M. (2006a) Mitochondrial localization and putative signaling function of sucrose synthase in maize, J. Biol. Chem. 281, 15625–15635.

    CAS  Google Scholar 

  • Subbaiah, C.C., Shah, N. and Rhoads, D.M. (2006b) Role of reactive oxygen species and alternative oxidase in hypoxia signaling in Arabidopsis, Plant Biol. 2006: Abstract # P36053.

    Google Scholar 

  • Subbaiah, C.C., Huber, S.C., Sachs, M.M. and Rhoads, D.M. (2007) Sucrose synthase: Expanding protein function, Plant Signal. Behav. 2, 36–37.

    Google Scholar 

  • Suszkiw, J. (1994) After the flood - Satellites show damage to Midwest farmlands, Agri. Res. 42 20–21.

    Google Scholar 

  • Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R. and Maurel, C. (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins, Nature 425, 393–397.

    CAS  PubMed  Google Scholar 

  • Tsuji, H., Nakazono, M., Saisho, D., Tsutsumi, N. and Hirai, A. (2000) Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: Evidence for involvement of calcium in expression of the alternative oxidase 1a gene, FEBS Lett. 471, 201–204.

    CAS  PubMed  Google Scholar 

  • Virolainen, E., Blokhina, O. and Fagerstedt, K. (2002) Ca2+ -induced high amplitude swelling and cytochrome c release from wheat ( Triticum aestivum L.) mitochondria under anoxic stress, Ann. Bot. 90, 509–516.

    CAS  PubMed  Google Scholar 

  • Vitorino, P.G., Alves, J.D., Magalhães, P.C., Magalhães, M.M., Lima, L.C.O. and Oliveira, L.E.M. (2001) Flooding tolerance and cell wall alterations in maize mesocotyl during hypoxia, Pesq. Agropec. Bras. 36, 1027–1035.

    Google Scholar 

  • Vogel, J. and Freeling, M. (1992) An anaerobic gene, which encodes an apparently non-glycolytic protein, shares sequence homology with Mu1.7 and Mu related sequence-a, Maize Genet. Coop. News Lett. 66, 21–22.

    Google Scholar 

  • Webster, C., Gaut, R.L., Browning, K.S., Ravel, J.M. and Roberts, J.K.M. (1991) Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips, J. Biol. Chem. 266, 23341–23346.

    CAS  PubMed  Google Scholar 

  • Xia, J.H. and Roberts, J.K.M. (1994) Improved cytoplasmic pH regulation increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low oxygen environment, Plant Physiol. 105, 651–657.

    CAS  PubMed  Google Scholar 

  • Xia, J.H. and Saglio, P.H. (1992) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia, Plant Physiol. 100, 40–46.

    CAS  PubMed  Google Scholar 

  • Xu, K., Xu, K., Fukao, T., Canalas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A., Bailey-Serres, J., Ronald, P.C. and Mackill, D.J. (2006) Sub1A is an ethylene responsive-factor-like gene that confers submergence tolerance to rice, Nature 442, 705–708.

    CAS  PubMed  Google Scholar 

  • Yan, B., Dai, Q., Liu, X., Huang, S. and Wang, Z. (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves, Plant Soil 179, 261–268.

    CAS  Google Scholar 

  • Yordanova, R. and Popova, L. (2007) Flooding-induced changes in photosynthesis and oxidative status in maize plants, Acta Physiol. Plant. 29, 535–541.

    CAS  Google Scholar 

  • Zaidi, P.H., Rafique, S., Singh, N.N. and Srinivasan, G. (2004) Tolerance to excess moisture in maize ( Zea mays L.): Susceptible crop stages and identification of tolerant genotypes, Field Crops Res. 90, 189–202.

    Google Scholar 

  • Zeng, Y., Wu, Y., Avigne, W.T. and Koch, K.E. (1999) Rapid repression of maize invertase by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential and seedling survival, Plant Physiol. 121, 599–608.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Li, Y., Wang, Z., Xia, Y., Chen, W. and Tang, K. (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering, Biotech. Adv. 25, 123–136.

    CAS  Google Scholar 

  • Zhang, Z.X., Tang, W.H., Tao, Y.S. and Zheng, Y.L. (2005) cDNA microarray analysis of early response to submerging stress in Zea mays roots, Russ. J. Plant Physiol. 52, 39–43.

    Google Scholar 

  • Zhang, Z.X., Zou, X.L., Tang, W.H. and Zheng, Y.L. (2006) Revelation on early response and molecular mechanism of submergence tolerance in maize roots by microarray and suppression subtractive hybridization, Environ. Exp. Bot. 58, 53–63.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Agriculture, Agricultural Research Service and by grant # 95-37100-1563 and grant # 96-35100-3143 from the US Department of Agriculture, National Research Initiative Competitive Grants Program.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Subbaiah, C.C., Sachs, M.M. (2009). Responses to Oxygen Deprivation and Potential for Enhanced Flooding Tolerance in Maize. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_17

Download citation

Publish with us

Policies and ethics