Skip to main content

Maize Disease Resistance

  • Chapter
Handbook of Maize: Its Biology

Abstract

This chapter presents a selective view of maize disease resistance to fungal diseases, highlighting some aspects of the subject that are currently of significant interest or that we feel have been under-investigated. These include:

  • The significant historical contributions to disease resistance genetics resulting from research in maize.

  • The current state of knowledge of the genetics of resistance to significant diseases in maize.

  • Systemic acquired resistance and induced systemic resistance in maize.

  • The prospects for the future, particularly for transgenically-derived disease resistance and for the elucidation of quantitative disease resistance.

  • The suitability of maize as a system for disease resistance studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adipala, E., J.P. Takan, and M.W. Ogenga-Latigo. 1995. Effect of planting density of maize on the progress and spread of northern leaf blight from Exserohilum turcicum infested residue source, pp. 25, In E. Adipala, (ed.) European Journal of Plant Pathology, Vol. 101.

    Google Scholar 

  • Agrios, G.N. 1997. Plant Pathology. Fourth edition. Academic Press. San Diego.

    Google Scholar 

  • Ali, M.L., J.H. Taylor, L. Jie, G. Sun, M. William, K.J. Kasha, L.M. Reid, and K.P. Pauls. 2005. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome48:521–533.

    Article  CAS  PubMed  Google Scholar 

  • Avila, C.-M., Z. Satovic, J.-C. Sillero, D. Rubiales, M.-T. Moreno, and K.P. PaulsA.-M. Torres. 2004. Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theoretical and Applied Genetics108:1071–1078.

    Article  CAS  PubMed  Google Scholar 

  • Badu-Apraku, B., V.E. Gracen, and G.C. Bergstrom. 1987a. A major gene for resistance to anthra-cnose stalk rot in maize. Phytopathology77:957–959.

    Article  Google Scholar 

  • Badu-Apraku, B., V.E. Gracen, and G.C. Bergstrom. 1987b. Inheritance of resistance to anthrac-nose stalk rot and leaf blight in a maize inbred derived from a temperate by tropical germplasm combination, pp. 221, InB. Badu-Apraku, (ed.) Maydica, Vol. 32.

    Google Scholar 

  • Bailey, A.M., Niblett, C.L., and A.S. Csinos. 2006. Controlling the black shank disease of tobacco by silencing the cutinase gene in the pathogen, Phytophthora parasitica var. nicotianae. Phytopathology96:S7.

    Article  Google Scholar 

  • Balint-Kurti, P.J., J.C. Zwonitzer, R.J. Wisser, M.L. Carson, M. Oropeza-Rosas, J.B. Holland, and S.J. Szalma. 2007. Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics176:645–657.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen, J.L., W.E. Blevins, and A.H. Ellingboe. 1988. Cell-autonomous recognition of the rust pathogen determines Rp1-specified resistance in maize. Science241:208–210.

    Article  CAS  PubMed  Google Scholar 

  • Bluhm, B.H., and C.P. Woloshuk. 2005. Amylopectin induces fumonisin B1 production by fusarium verticillioides during colonization of maize kernels, pp. 1333, InB. H. Bluhm, (ed.) Molecular Plant-Microbe Interactions, Vol. 18.

    Google Scholar 

  • Bradley, D.J., G.S. Gilbert, and I.M. Parker. 2003. Susceptibility of clover species to fungal infection: The interaction of leaf surface traits and environment. American Journal of Botany90:857–864.

    Article  Google Scholar 

  • Brewster, V.A., M.L. Carson, and Z.W. WicksIII,. 1992. Mapping components of partial resistance to northern leaf blight of maize using reciprocal translocation. Phytopathology82:225–229.

    Article  Google Scholar 

  • Broglie, K., K. Butler, A. Conceicao, T. Frey, J. Hawk, D. Multani, and P. Wolters. 2006. Polynucleotides and methods for making plants resistant to fungal pathogens. USA 2006.

    Google Scholar 

  • Brooks, T.D., W.P. Williams, G.L. Windham, M.C. Willcox, and K.P. PaulsH.K. Abbas. 2005. Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E. Crop Science45:171–174.

    CAS  Google Scholar 

  • Brown, J.K.M. 2002. Yield penalties of disease resistance in crops. Current Opinion in Plant Biology5:339–344.

    Article  CAS  PubMed  Google Scholar 

  • Brunelli, K.R., H.P. Silva, and L.E. Aranha-Camargo. 2002. Mapeamento de genes de resistencia quantitativa a Puccinia polysora em milho. Fitopatologia Brasileira27:134–140.

    Article  CAS  Google Scholar 

  • Bubeck, D.M., M.M. Goodman, W.D. Beavis, and D. Grant. 1993. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Science33:838–847.

    Article  Google Scholar 

  • Buckler, E.S., J.M. Thornsberry, and S. Kresovich. 2001. Molecular diversity, structure and domestication of grasses. Genetical Research77:213–218.

    Article  CAS  PubMed  Google Scholar 

  • Buckler, E.S., B.S. Gaut, and M.D. McMullen. 2006. Molecular and functional diversity of maize. Current Opinion in Plant Biology9:172–176.

    Article  CAS  PubMed  Google Scholar 

  • Busboom, K.N., and D.G. White. 2004. Inheritance of resistance to aflatoxin production and Aspergillus ear rot of corn from the cross of inbreds B73 and Oh516. Phytopathology94:1107–1115.

    Article  CAS  PubMed  Google Scholar 

  • Calenge, F., A. Faure, M. Goerre, C. Gebhardt, W.-E. Van-de-Weg, L. Parisi, and C.-E. Durel. 2004. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology94:370–379.

    Article  CAS  PubMed  Google Scholar 

  • Calonnec, A., H. Goyeau, and C.D. Vallavieille-Pope. 1996. Effects of induced resistance on infection efficiency and sporulation of Puccinia striiformis on seedlings in varietal mixtures and on field epidemics in pure stands. European Journal of Plant Pathology102:733–741.

    Article  Google Scholar 

  • Carson, M.L., and A.L. Hooker. 1981. Inheritance of resistance to stalk rot of corn caused by Colletotrichum graminicola, pp. 1190, InM. L. Carson, (ed.) Phytopathology, Vol. 71.

    Google Scholar 

  • Carson, M.L., and C.G. Van Dyke. 1994. Effect of light and temperature on expression of partial resistance of maize to Exserohilum turcicum. Plant Disease78:519–522.

    Article  Google Scholar 

  • Chang, R.-Y., and P.-A. Peterson. 1995. Genetic control of resistance to Bipolaris maydis: One gene or two genes? Journal of Heredity86:94–97.

    CAS  Google Scholar 

  • Chen, C.X., Z.L. Wang, D.E. Yang, C.J. Ye, Y.B. Zhao, D.M. Jin, M.L. Weng, and B. Wang. 2004. Molecular tagging and genetic mapping of the disease resistance gene RppQ to southern corn rust. Theoretical and Applied Genetics108:945–950.

    Article  CAS  PubMed  Google Scholar 

  • Chern, M.S., H.A. Fitzgerald, R.C. Yadav, P.E. Canlas, X. Dong, and K.P. PaulsP.C. Ronald. 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant Journal27:101–113.

    Article  CAS  PubMed  Google Scholar 

  • Chern, M., H.A. Fitzgerald, P.E. Canlas, D.A. Navarre, and P.C. Ronald. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Molecular Plant-Microbe Interactions18:511–520.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, M.S., M. Hudon, A. Devaux, and I. Ogilvie. 1987. Inheritance of resistance to Gibberella ear rot in maize, pp. 29, InM. S. Chiang, (ed.) Phytoprotection, Vol. 68.

    Google Scholar 

  • Choi, S.H., S.K. Green, D.R. Lee, and J.Y. Yoon. 1989. Incompletely dominant single resistance gene for peanut stripe virus in soybean line AGS 129. EuphyticaV40:193–196.

    Google Scholar 

  • Ciuffetti, L.M., M.R. Pope, L.D. Dunkle, J.M. Daly, and H.W. Knoche. 1983. Isolation and structure of an inactive product derived from the host-specific toxin produced by Helminthosporium carbonum. Biochemistry22:3507–3510.

    Article  CAS  Google Scholar 

  • Clay, K., and P.X. Kover. 1996. The red queen hypothesis and plant/pathogen interactions. Annual Review of Phytopathology34:29–50.

    Article  CAS  PubMed  Google Scholar 

  • Clements, M.J., J.W. Dudley, and D.G. White. 2000. Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology90:1018–1025.

    Article  CAS  PubMed  Google Scholar 

  • Clements, M.J., K.W. Campbell, C.M. Maragos, C. Pilcher, J.M. Headrick, J.K. Pataky, and D.G. White. 2003. Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and fusarium ear rot of corn. Crop Science43:1283–1293.

    Article  CAS  Google Scholar 

  • Clements, M.J., C.M. Maragos, J.K. Pataky, and D.G. White. 2004. Sources of resistance to fumonisin accumulation in grain and fusarium ear and kernel rot of corn. Phytopathology94:251–260.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, D., R.W. Caldwell, and E.B. Smalley. 1983. Susceptibility of maize to Gibberella zeae ear rot: Relationship to host genotype, pathogen virulence, and zearalenone contamination. Plant Disease67:89–91.

    Article  Google Scholar 

  • Davis, D.W., C.A. Engelkes, and J.V. Groth. 1990. Erosion of resistance to common leaf rust in exotic-derived maize during selection for other traits. Phytopathology80:339–342.

    Article  Google Scholar 

  • Dean, J.D., P.H. Goodwin, and T. Hsiang. 2005. Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany56:1525–1533.

    Article  CAS  PubMed  Google Scholar 

  • Dingerdissen, A.L., H.H. Geiger, M. Lee, A. Schechert, and H.G. Welz. 1996. Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Molecular Breeding2:143–156.

    Article  CAS  Google Scholar 

  • Djonovic, S., W.A. Vargas, M.V. Kolomiets, M. Horndeski, A. Wiest, and C.M. Kenerley. 2007. A proteinaceous elicitor Sm1 from the beneficial fungus trichoderma virens is required for induced systemic resistance in maize. Plant Physiology (In Press).

    Google Scholar 

  • Doebley, J., A. Stec, and L. Hubbard. 1997. The evolution of apical dominance in maize. Nature London386:485–488.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X. 2004. NPR1, all things considered. Current Opinion in Plant Biology7:547–552.

    Article  CAS  PubMed  Google Scholar 

  • Dorrance, A.E., K.H. Hinkelmann, and H.L. Warren. 1998. Diallel analysis of diplodia ear rot resistance in maize. Plant Disease82:699–703.

    Article  Google Scholar 

  • Duvick, J. 2001. Prospects for reducing fumonisin contamination of maize through genetic modification. Environmental Health Perspectives109 S2:337–342.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, J., P. Dodds, and T. Pryor. 2000. Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology3:278–284.

    Article  CAS  PubMed  Google Scholar 

  • Gao, A.-G., S.M. Hakimi, C.A. Mittanck, Y. Wu, B.M. Woerner, D.M. Stark, D.M. Shah, J. Liang, and C.M.T. Rommens. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology18:1307–1310.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., W.B. Shim, C. Go?bel, S. Kunze, I. Feussner, R. Meeley, P. Balint-Kurti, and M. Kolomiets. 2007. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Molecular Plant-Microbe Interactions20:922–933.

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt, C., and J.P.T. Valkonen. 2001. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology39:79–102.

    Article  CAS  PubMed  Google Scholar 

  • Gevers, H.O. 1975. A new major gene for resistance to Helminthosporium turcicum leaf blight of maize, pp. 296–299 Plant disease reporter.

    Google Scholar 

  • Gevers, H.O., and J.K. Lake. 1994. GLS1: A major gene for resistance to grey leaf spot in maize. South African Journal of Science90:377–379.

    Google Scholar 

  • Gevers, H.O., J.K. Lake, and T. Hohls. 1994. Diallel cross analysis of resistance to gray leaf spot in maize. Plant Disease78:379–383.

    Article  Google Scholar 

  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology43:205–227.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S.-G., M. Bartsch, I. Matthies, H.-O. Gevers, P.-E. Lipps, and R.-C. Pratt. 2004. Linkage of molecular markers to Cercospora zeae-maydis resistance in maize. Crop Science44 : 628 – 636.

    Article  CAS  Google Scholar 

  • Gordon, S.G., P.E. Lipps, and R.C. Pratt. 2006. Heritability and components of resistance to Cercospora zeae-maydis derived from maize inbred VO613Y. Phytopathology96:593–598.

    Article  PubMed  Google Scholar 

  • Gorlach, J., S. Volrath, G. Knauf-Beiter, G. Hengy, U. Beckhove, K.H. Kogel, M. Oostendorp, T. Staub, E. Ward, H. Kessmann, and J. Ryals. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat, pp. 629, InJ. Gorlach, (ed.) Plant Cell, Vol. 8.

    Google Scholar 

  • Grant, M., and C. Lamb. 2006. Systemic immunity, pp. 414, InM. Grant, (ed.) Current Opinion in Plant Biology, Vol. 9.

    Google Scholar 

  • Grison, R., B. Grezes-Besset, M. Schneider, N. Lucante, L. Olsen, J.-J. Leguay, and A. Toppan. 1996. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology14:643–646.

    Article  CAS  PubMed  Google Scholar 

  • Gurr, S.J., and P.J. Rushton. 2005a. Engineering plants with increased disease resistance: How are we going to express it? Trends in Biotechnology23:283–290.

    Article  CAS  Google Scholar 

  • Gurr, S.J., and P.J. Rushton. 2005b. Engineering plants with increased disease resistance: What are we going to express? Trends in Biotechnology23:275–282.

    Article  CAS  Google Scholar 

  • Hammond-Kosack, K.E., and J.D.G. Jones. 1993. Incomplete dominance of tomato Cf genes for resistance to Cladosporium fulvum. Molecular Plant-Microbe Interactions7:58–70.

    Article  Google Scholar 

  • Hammond-Kosack, K.E., and J.E. Parker. 2003. Deciphering plant-pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology14:177–193.

    Article  CAS  PubMed  Google Scholar 

  • Hart, L.P., E. Gendloff, and E.C. Rossman. 1984. Effect of corn genotypes on ear rot infection by Gibberella zeae. Plant Disease68:296–298.

    Google Scholar 

  • Holland, J.B., D.V. Uhr, D. Jeffers, and M.M. Goodman. 1998. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theoretical and Applied Genetics96:232–241.

    Article  Google Scholar 

  • Hooker, A.L. 1956. Association of resistance to several seedling root, stalk, and ear diseases in Corn, pp. 379, InA. L. Hooker, (ed.) Phytopathology, Vol. 46.

    Google Scholar 

  • Hooker, A.L. 1963. Inheritance of chlorotic-lesion resistance to Helminthosporium turcicum in seedling corn, pp. 660, InA. L. Hooker, (ed.) Phytopathology, Vol. 53.

    Google Scholar 

  • Hooker, A.L. 1977. A second major gene locus in corn for chlorotic-lesion resistance to Helminthosporium turcicum, pp. 132, InA. L. Hooker, (ed.) Crop Science, Vol. 17.

    Google Scholar 

  • Hooker, A.L. 1981. Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn, pp. 87, InA. L. Hooker, (ed.) Maize Genetics Cooperation News Letter.

    Google Scholar 

  • Hu, G., and S.H. Hulbert. 1994. Evidence for the involvement of gene conversion in meiotic instability of the Rp1 rust resistance genes of maize. Genome37:742–746.

    CAS  PubMed  Google Scholar 

  • Hu, G., T.E. Richter, S.H. Hulbert, and T. Pryor. 1996. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell8:1367–1376.

    Article  CAS  PubMed  Google Scholar 

  • Hulbert, S.H. 1997. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annual Review of Phytopathology35:293–310.

    Article  CAS  PubMed  Google Scholar 

  • Hulbert, S., C.A. Webb, S.M. Smith, Q. Sun. 2001. Resistance gene complexes: Evolution and utilization. Annual Review of Phytopathology39:285–312.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J.C., G.O. Edmeades, I. Armstead, H.R. Lafitte, M.D. Hayward, and D. Hoisington. 1999. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theoretical and Applied Genetics99:1106–1119.

    Article  CAS  Google Scholar 

  • Jines, M.P., P. Balint-Kurti, L.A. Robertson-Hoyt, T.L. Molnár, J. Holland, and M.M. Goodman. 2006. Mapping resistance to southern rust in a tropical by temperate maize recombinant inbred topcross population. Theoretical and Applied Genetics (in press).

    Google Scholar 

  • Johal, G.S., and S.P. Briggs. 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science258:985–7.

    Article  CAS  PubMed  Google Scholar 

  • Jung, M., T. Weldekidan, D. Schaff, A. Paterson, S. Tingey, and J. Hawk. 1994. Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theoretical and Applied Genetics89:413–418.

    Article  CAS  Google Scholar 

  • Kappelman, A.J.J., and D.L. Thompson. 1966. Inheritance of resistance to Diplodia stalk-rot in corn, pp. 288, In A. J. J. Kappelman, (ed.) Crop Sci., Vol. 6.

    Google Scholar 

  • Kawai, M., D.H. Rich, and J.D. Walton. 1983. The structure and conformation of HC-toxin. Biochemical and Biophysical Research Communications111:398–403.

    Article  CAS  PubMed  Google Scholar 

  • Knox-Davies, P.S. 1974. Penetration of maize leaves by Helminthosporium turcicum. Phytopathology64:1468–70.

    Article  Google Scholar 

  • Kogel, K.H., and R. Huckelhoven. 1999. Superoxide generation in chemically activated resistance of barley in response to inoculation with the powdery mildew fungus, pp. 1, InK. H. Kogel, (ed.) Journal of Phytopathology, Vol. 147.

    Google Scholar 

  • Leath, S., R.P. Thakur, and K.J. Leonard. 1987. Effects of temperature and light on reaction of corn to race 3 of Exserohilum turcicum, pp. 1737, InS. Leath, (ed.) Phytopathology, Vol. 77.

    Google Scholar 

  • Leath, S., R.P. Thakur, and K.J. Leonard. 1990. Variation in expression of monogenic resistance in corn to Exserohilum turcicum race 3 under different temperature and light regimes. Phytopathology80:309–313.

    Article  Google Scholar 

  • Lehmensiek, A., A.-M. Esterhuizen, D. van-Staden, S.-W. Nelson, and K.P. PaulsA.-E. Retief. 2001. Genetic mapping of gray leaf spot (GLS) resistance genes in maize. Theoretical and Applied Genetics103:797–803.

    Article  CAS  Google Scholar 

  • Levine, A., R. Tenhaken, R. Dixon, and C. Lamb. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell79:583–593.

    Article  CAS  PubMed  Google Scholar 

  • Levings, C.S.3rd,. 1990. The Texas Cytoplasm of Maize: Cytoplasmic Male Sterility and Disease Susceptibility. Science250:942–947.

    Article  CAS  PubMed  Google Scholar 

  • Levings, C.S. 3rd, and J.N. Siedow. 1992. Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Molecular Biology19:135–47.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.K., L.J. Luo, H.W. Mei, A.H. Paterson, X.H. Zhao, D.B. Zhong, Y.P. Wang, X.Q. Yu, L. Zhu, R. Tabien, J.W. Stansel, and C.S. Ying. 1999. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Molecular and General Genetics261:58–63.

    Article  CAS  PubMed  Google Scholar 

  • Lilley, C.J., M. Bakhetia, W.L. Charlton, and P.E. Urwin. 2007. Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology8:701–711.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z.X., S.C. Wang, J.R. Dai, L.J. Huang, and H.H. Cao. 2003. Studies of genetic analysis and SSR linked marker location of gene resistance to southern rust in inbred line P25 of maize. Acta Genetica Sinica30:706–710.

    CAS  PubMed  Google Scholar 

  • Logemann, E., S.-C. Wu, J. Schroder, E. Schmelzer, I.E. Somssich, and K.P. PaulsK. Hahlbrock. 1995. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. The Plant Journal8:865–876.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G.B., A.J. Bogdanove, and G. Sessa. 2003. Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology54:23–61.

    Article  CAS  PubMed  Google Scholar 

  • McDowell, J.M., and S.A. Simon. 2006. Recent insights into R gene evolution. Molecular Plant Pathology7:437–448.

    Article  CAS  PubMed  Google Scholar 

  • Meeley, R., and J. Walton. 1993. Molecular biology and biochemistry of Hm1, a maize gene for fungal resistance. Kulwer Academic Press, Dordrecht.

    Google Scholar 

  • Meeley, R.B., G.S. Johal, S.P. Briggs, J.D. Walton. 1992. A biochemical phenotype for a disease resistance gene of maize. Plant Cell4:71–77.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, B.C., A. Kozik, A. Griego, H. Kuang, and R.W. Michelmore. 2003. Genome-wide analysis of NBS-LRR-encoding genes in arabidopsis. Plant Cell15:809–834.

    Article  CAS  PubMed  Google Scholar 

  • Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V.M. Williamson. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucle-otide binding, leucine-rich repeat family of plant genes. Plant Cell10:1307–1320.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds, T., R.V. James, M.J. Palmer, and P.H. Williams. 1995. Genetics of Brassica rapa (syn. campestris). 2. Multiple disease resistance to three fungal pathogens: Peronospora parastica, Albugo candida and Leptosphaeria maculans. Heredity75:362–369.

    Article  PubMed  Google Scholar 

  • Monosi, B., R.-J. Wisser, L. Pennill, and S.-H. Hulbert. 2004. Full-genome analysis of resistance gene homologues in rice. Theoretical and Applied Genetics109:1434–1447.

    Article  CAS  PubMed  Google Scholar 

  • Morris, S.W., B. Vernooij, S. Titatarn, M. Starrett, S. Thomas, C.C. Wiltse, R.A. Frederiksen, A. Bhandhufalck, S. Hulbert, and S. Uknes. 1998. Induced resistance responses in maize. Molecular Plant Microbe Interactions11:643–658.

    Article  CAS  PubMed  Google Scholar 

  • Multani, D.S., R.B. Meeley, A.H. Paterson, J. Gray, S.P. Briggs, and G.S. Johal. 1998. Plant-pathogen microevolution: Molecular basis for the origin of a fungal disease in maize. Proceedings of the National Academy of Sciences of the United States of America95:1686–91.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, O.E., and A.J. Ullstrup. 1964. Resistance to leaf spot in maize; genetic control of resistance to Helminthosporium carbonum Ull. Journal of Heredity55:195–199.

    Google Scholar 

  • Nyhus, K.A., W.A. Russell, W.D. Guthrie, and C.A. Martinson. 1989. Reaction of two maize synthetics to anthracnose stalk rot and northern corn leaf blight following recurrent selection for resistance to Diplodia stalk rot and European corn borer. Phytopathology79:166–169.

    Article  Google Scholar 

  • Oerke, E.C. 2005. Crop losses to pests. The Journal of Agricultural Science144:31–43.

    Article  Google Scholar 

  • Ogliari, J.B., M.A. Guimaraes, and I.O. Geraldi. 2005. New resistance genes in the Zea mays-Exserohilu turcicum pathosystem. Genetics and Molecular Biology28:435–439.

    Article  CAS  Google Scholar 

  • Olatinwo, R., K. Cardwell, A. Menkir, M. Deadman, and A. Julian. 1999. Inheritance of resistance to Stenocarpella macrospora (Earle) ear rot of maize in the mid-altitude zone of Nigeria. European Journal of Plant Pathology105:535–543.

    Article  Google Scholar 

  • Parisy, V., B. Poinssot, L. Owsianowski, A. Buchala, J. Glazebrook, and F. Mauch. 2007. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. The Plant Journal49:159–172.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-W., E. Kaimoyo, D. Kumar, S. Mosher, and D.F. Klessig. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116.

    Article  CAS  PubMed  Google Scholar 

  • Parker, I.M., and G.S. Gilbert. 2004. The evolutionary ecology of novel plant-pathogen interactions. Annual Review of Ecology, Evolution, and Systematics35:675–700.

    Article  Google Scholar 

  • Parlevliet, J.-E. 2002. Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica124:147–156.

    Article  CAS  Google Scholar 

  • Paul, C., G. Naidoo, A. Forbes, V. Mikkilineni, D. White, and T. Rocheford. 2003. Quantitative trait loci for low aflatoxin production in two related maize populations. Theoretical and Applied Genetics107:263–270.

    Article  CAS  PubMed  Google Scholar 

  • Pè, M.-E., L. Gianfranceschi, G. Taramino, R. Tarchini, P. Angelini, M. Dani, and G. Binelli. 1993. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Molecular and General Genetics241:11–16.

    Article  PubMed  Google Scholar 

  • Pérez-Brito, D., D. Jeffers, D. Gonzales-de-León, M. Khairallah, M. Cortes-Cruz, G. Velásquez-Cardelas, S. Azpiroz-Rivero, and G. Srinivasan. 2001. Cartografia de QTL de la resistencia a la pudrición de la mazorca (Fusarium moniliforme) en maiz de Valles Altos, México. Agrociencia35:181–196.

    Google Scholar 

  • Piperno, D.R., and K.V. Flannery. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences of the United States of America98:2101–3.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, R.C., and S.G. Gordon. 2006. Breeding for resistance to maize foliar pathogens. Plant Breeding Reviews27:119–173.

    CAS  Google Scholar 

  • Pring, D.R., and D.M. Lonsdale. 1989. Cytoplasmic male sterility and maternal inheritance of disease susceptibility in maize. Annual Review of Phytopathology27:483–502.

    Article  Google Scholar 

  • Pryor, A.J. 1987. The origin and structure of fungal disease resistance genes in plants. Trends in Genetics3:157–161.

    Article  Google Scholar 

  • Qi, X., G. Jiang, W. Chen, R.-E. Niks, P. Stam, and P. Lindhout. 1999. Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics99:877–884.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., J. Emberton, M. Ogden, P. SanMiguel, and J.L. Bennetzen. 2002. Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell14:3213–3223.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R.G. 1950. Morphology of the ear and tassel of maize. American Journal of Botany37:697–704.

    Article  Google Scholar 

  • Rensburg, J.B.J.V., J.D. Rossouw, and C.S.V. Deventer. 2003. New generation maize inbred lines resistant to diplodia ear rot, caused by Stenocarpella maydis (Berk) Sutton, pp. 127, InJ. B. J. v. Rensburg, (ed.) South African Journal of Plant and Soil, Vol. 20.

    Google Scholar 

  • Richard, J.L., and G.A. Payne. 2002. Mycotoxins: Risks in Plant, Animal and Human Systems. Task Force report Council for Agricultural Science and Technology, Ames, Iowa, USA.

    Google Scholar 

  • Richter, T.E., T.J. Pryor, J.L. Bennetzen, and S.H. Hulbert. 1995. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics141:373–81.

    CAS  PubMed  Google Scholar 

  • Robertson, L.A., C.E. Kleinschmidt, D.G. White, G.A. Payne, C.M. Maragos, and J.B. Holland. 2006. Heritabilities and correlations of fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Science46:353–361.

    Article  CAS  Google Scholar 

  • Robertson-Hoyt, L.A., M.P. Jines, P.J. Balint-Kurti, C.E. Kleinschmidt, D.G. White, G.A. Payne, C.M. Maragos, T.L. Molnar, and J.B. Holland. 2006. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science46:1734–1743.

    Article  CAS  Google Scholar 

  • Robertson-Hoyt, L.A., J. Betran, G.A. Payne, D.G. White, T. Isakeit, C.M. Maragos, T.L. Molnar, and J.B. Holland. 2007. Relationships among resistances to fusarium and aspergillus ear rots and contamination by fumonisin and aflatoxin in maize. Phytopathology97:311–317.

    Article  CAS  PubMed  Google Scholar 

  • Romer, P., S. Hahn, T. Jordan, T. Strauss, U. Bonas, and T. Lahaye. 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance Gene. Science318:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Saghai Maroof, M.A., Y.G. Yue, Z.X. Xiang, E.L. Stromberg, and G.K. Rufener. 1996. Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theoretical and Applied Genetics93:539–546.

    Article  Google Scholar 

  • Schaafsma, A.W., R.W. Nicol, and L.M. Reid. 1997. Evaluating commercial maize hybrids for resistance to gibberella ear rot. European Journal of Plant Pathology103:737–746.

    Article  Google Scholar 

  • Schechert, A.W., H.G. Welz, and H.H. Geiger. 1999. QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Science39:514–523.

    Article  Google Scholar 

  • Scheffer, R.P., and A.J. Ullstrup. 1965. A host-specific toxic metabolite from Helminthosporium carbonum. Phytopathology55:1037–1038.

    CAS  Google Scholar 

  • Scott, G.E., S.B. King, and J.W.J. Armour. 1984. Inheritance of resistance to southern corn rust in maize Zea-mays populations. Crop Science24:265–267.

    Article  Google Scholar 

  • Smith, D.R., and D.G. White. 1988. Diseases of corn, p. 687–766, InG. F. Sprague and J. W. Dudley, eds. Corn and Corn Improvement, Vol. 18. American Society of Agronomy Inc., Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Smith, S.M., A.J. Pryor, and S.H. Hulbert. 2004. Allelic and haplotypic diversity at the rp1 rust resistance locus of maize. Genetics167:1939–1947.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S.M.S.M., and S.H.S.H. Hulbert. 2005. Recombination events generating a novel Rp1 race specificity. Molecular Plant-Microbe Interactions18:220–228.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, C.R., S. Grant, D.J. Altier, P.F. Dowd, O. Crasta, O. Folkerts, and N. Yalpani. 2001. Maize rhm 1 resistance to bipolaris maydis is associated with few differences in pathogenesis-related proteins and global mRNA profiles. Molecular Plant-Microbe Interactions14:947–954.

    Article  CAS  PubMed  Google Scholar 

  • Steffenson, B.J. 1992. Analysis of durable resistance to stem rust in barley. Euphytica63:153–167.

    Article  Google Scholar 

  • Stewart, H.E., J.E. Bradshaw, and B. Pande. 2003. The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathology52:193–198.

    Article  Google Scholar 

  • Sudupak, M.A., J.L. Bennetzen, and S.H. Hulbert. 1993. Unequal exchange and meiotic instability of disease-resistance genes in the Rp1 region of maize. Genetics133:119–125.

    CAS  PubMed  Google Scholar 

  • Talukder, Z.I., D. Tharreau, and A.H. Price. 2004. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytologist162:197–209.

    Article  CAS  Google Scholar 

  • Thakur, R.P., K.J. Leonard, and S. Leath. 1989a. Effects of temperature and light on virulence of Exserohilum turcicum on corn. Phytopathology79:631–635.

    Article  Google Scholar 

  • Thakur, R.P., K.J. Leonard, and R.K. Jones. 1989b. Characterization of a new race of Exserohilum turcicum virulent on corn with resistance gene Ht N. Plant Disease73:151–155.

    Article  Google Scholar 

  • Thompson, D.L., R.R. Bergquist, G.A. Payne, D.T. Bowman, and M.M. Goodman. 1987. Inheritance of resistance to gray leaf spot in maize. Crop Science27:243–246.

    Article  Google Scholar 

  • Ullstrup, A.J. 1941. Inheritance of susceptibility to infection by Helminthosporium maydisrace 1 in maize. Journal of Agricultural Research63:331–334.

    Google Scholar 

  • Ullstrup, A.J. 1944. Further studies on a species of parasitizing Helminthosporium corn. Phytopathology34:214–222.

    Google Scholar 

  • Ullstrup, A.J. 1965. Inheritance and linkage of a gene determining resistance in maize to an american race of Puccinia polysora Phytopathology55:425–428.

    Google Scholar 

  • Ullstrup, A.J. 1972. The impact of the southern corn leaf blight epidemics of 1970–71. Annual Review of Pharmacology10:37–50.

    Google Scholar 

  • Vallad, G.E., and R.M. Goodman. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science44:1920–1934.

    Article  Google Scholar 

  • Wang, G.L., D.J. Mackill, J.M. Bonman, S.R. McCouch, M.C. Champoux, and R.J. Nelson. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics136:1421–1434.

    CAS  PubMed  Google Scholar 

  • Ward, J.M.J., E.L. Stromberg, D.C. Nowell, and F.W. Nutter, Jr. 1999. Gray leaf spot: A disease of global importance in maize production. Plant Disease83:884–895.

    Article  Google Scholar 

  • Welz, H.-G., and H.-H. Geiger. 2000. Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding119:1–14.

    Article  CAS  Google Scholar 

  • Welz, H.G., A.W. Schechert, and H.H. Geiger. 1999a. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theoretical and Applied Genetics98:1036–1045.

    Article  CAS  Google Scholar 

  • Welz, H.G., X.C. Xia, P. Bassetti, A.E. Melchinger, and T. Lubberstedt. 1999b. QTLs for resistance to Setosphaeria turcica in an early maturing DentxFlint maize population. Theoretical and Applied Genetics99:649–655.

    Article  Google Scholar 

  • White, D.G., ed. 1999. Compendium of corn diseases, 3rd ed. The American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Williams, W.P., G.L. Windham, and P.M. Buckley. 2003. Enhancing maize germplasm with resistance to aflatoxin contamination. Toxin Reviews22:175–193.

    Article  CAS  Google Scholar 

  • Wise, R.P., C.R. Bronson, P.S. Schnable, and H.T. Horner. 1999. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Advances in Agronomy65:79–130.

    Article  CAS  Google Scholar 

  • Wisser, R.J., Q. Sun, S.H. Hulbert, S. Kresovich, and R.J. Nelson. 2005. Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics169:2277–2293.

    Article  CAS  PubMed  Google Scholar 

  • Wisser, R.J., P.J. Balint-Kurti, and R.J. Nelson. 2006. The genetic architecture of disease resistance in maize: A synthesis of published studies. Phytopathology96:120–129.

    Article  CAS  PubMed  Google Scholar 

  • Wolters, P., T. Frey, A. Conceição, D. Multani, K. Broglie, S. Davis, K. Fengler, E. Johnson, K. Bacot, K. Simcox, T. Weldekidan, and J. Hawk. 2006. Map-based cloning of a QTL for anthracnose stalk rot resistance in Maize, Paper W412, Plant and Animal Genome Meeting, San Diego.

    Google Scholar 

  • Xiao, S., S. Ellwood, O. Calis, E. Patrick, T. Li, M. Coleman, and J.G. Turner. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science291:118–120.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, W., J. Zhao, S. Fan, L. Li, J. Dai, and M. Xu. 2007. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). TAG Theoretical and Applied Genetics115:501–508.

    Article  CAS  Google Scholar 

  • Yang, D.E., C.L. Zhang, D.S. Zhang, D.M. Jin, M.L. Weng, S.J. Chen, H. Nguyen, and B. Wang. 2004 . Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. TAG Theoretical and Applied Genetics108:706–711.

    Article  CAS  Google Scholar 

  • Yun, S.J., L. Gyenis, P.M. Hayes, I. Matus, K.P. Smith, B.J. Steffenson, and G.J. Muehlbauer. 2005 . Quantitative trait loci for multiple disease resistance in wild barley. Crop Science45:2563–2572.

    Article  CAS  Google Scholar 

  • Zaitlin, D., S. Demars, and Y. Ma. 1993. Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedlings. Genome36:555–564.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., A.S. Peek, D. Dunams, and B.S. Gaut. 2002. Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis). Genetics162:851–860.

    CAS  PubMed  Google Scholar 

  • Zhou, N., T.-L. Tootle, and J. Glazebrook. 1999. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell11:2419–2428.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., K.-J. Leonard, and H.-F. Kaeppler. 2003. Quantitative trait loci associated with seedling resistance to isolates of Puccinia coronata in oat. Phytopathology93:860–866.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Bill Dolezal, Judith Kolkman, and Randy Wisser for helpful discussions regarding preparation of this chapter

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Balint-Kurti, P.J., Johal, G.S. (2009). Maize Disease Resistance. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_12

Download citation

Publish with us

Policies and ethics