Skip to main content

Maize Genome Structure and Evolution

  • Chapter
Handbook of Maize

The nuclear genome of maize contains the most complex structure of any yet studied in depth, with small gene islands immersed in seas of nested transposable elements. The DNA between genes is exceptionally unstable in maize, such that the ancestral existence of most or all intergenic TE insertions is erased within a few million years. The genes appear to show a very high mobility that is partly an outcome of the mis-annotation of TEs as genes and the presence of ˜10,000 pseudogenes, compared to ˜35,000 true protein-encoding genes and ˜210,000 TE genes. The primary mechanisms of genomic structural change, namely DNA breakage/repair, recombination and transposition, have been identified. All of these processes have been found to be exceptionally active for genome rearrangement in maize, compared to other angiosperms. Further research is needed on the specificities exhibited by these mechanisms, on the reasons for their very high rates of activity in maize, and on the biological outcomes of this continuous genomic fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananiev, E.V., R.L. Phillips and H.W. Rines (1998a) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95: 10785–10790.

    Article  CAS  Google Scholar 

  • Ananiev, E.V., R.L. Phillips and H.W. Rines (1998b) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95: 13073–13078.

    Article  CAS  Google Scholar 

  • Avramova, Z., P. SanMiguel, E. Georgieva and J.L. Bennetzen (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell 7: 1667–1680.

    CAS  Google Scholar 

  • Avramova, Z., A. Tikhonov, P. SanMiguel, Y.-K. Jin, C. Liu, S.-S. Woo, R.A. Wing and J.L. Bennetzen (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J. 10: 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Babushok, D.V., K. Ohshima, E.M. Ostertag, X. Chen, Y. Wang, P.K. Mandal, N. Okada, C.S. Abrams and H.H. Kazazian Jr. (2007) A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res. 17: 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Banerji, J., S. Rusconi and W. Schaffner (1981) Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.D. (1972) Nuclear DNA content and minimum generation time. Proc. Royal Soc. London, Series B 181: 109–135.

    Article  CAS  Google Scholar 

  • Bennetzen, J. L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J. L. (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Gen. Dev. 15:1–7.

    Article  CAS  Google Scholar 

  • Bennetzen, J. L., W. E. Brown and P. S. Springer (1988) DNA modification within and flanking maize transposable elements. In O.E. Nelson, Jr., ed., Plant Transposable Elements. Plenum Press, New York, pp. 237–250.

    Google Scholar 

  • Bennetzen, J.L., C. Coleman, J. Ma, R. Liu and W. Ramakrishna (2004) Consistent over-estimation of gene number in complex plant genomes. Curr. Opin. Plant Biol. 7: 732–736.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. and E.A. Kellogg (1997) Do plants have a one way ticket to genomic obesity? Plant Cell 9: 1509–1514.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J. L. and J. Ma (2003) The genetic colinearity of rice and other cereals based on genomic sequence analysis. Curr. Opin. Plant Biol. 6:128–133.

    Article  CAS  Google Scholar 

  • Bennetzen, J.L., J. Ma and K.M. Devos (2005) Mechanisms of recent genome size variation in flowering plants. Annals Bot. 95: 127–132.

    Article  CAS  Google Scholar 

  • Bennetzen, J.L., R. Liu, J. Ma and A. Pontaroli (2005) Maize genome structure and rearrangement. Maydica 50: 387–392.

    Google Scholar 

  • Brink, R.A. (1958) Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23: 379–391.

    CAS  Google Scholar 

  • Bruggmann, R., A.K. Bharti, H. Gundlach, J. Lai, S. Young, A.C. Pontaroli, F. Wei, G. Haberer, G. Fuks, C. Du, C. Raymond, M.C. Estep, R. Liu, J.L. Bennetzen, A.P. Chan, P.D. Rabinowicz, J. Quackenbush, W.B. Barbazuk, R.A. Wing, B. Birren, C. Nusbaum, S. Rounsley, K.F.X. Mayer and J. Messing (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res. 16: 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E., S.E. White and S.R. Wessler (1994) Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., P. SanMiguel, A.C. de Oliveira, S.-S. Woo, H. Zhang, R.A. Wing and J.L. Bennetzen (1997) Microcolinearity in the sh2-homologous regions of the maize, rice and sorghum genomes. Proc. Natl. Acad. Sci. USA 94: 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.M., E. Linton, J. Messing and J.F. Doebley (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc. Natl. Acad. Sci. USA 101: 700–707.

    Article  CAS  Google Scholar 

  • Cone, K.C, R.J. Schmidt, B. Burr and F. Burr (1988) Advantages and limitations of using Spm as a transposon tag. In O.E. Nelson, Jr., ed., Plant Transposable Elements. Plenum Press, New York, pp. 149–159.

    Google Scholar 

  • Cooper, D.C. and R.A. Brink (1937) Chromosome homology in races of maize from different geographical regions. Am. Nat. 71: 582–587.

    Article  Google Scholar 

  • Cowan, R.K., D.R. Hoen, D.J. Schoen and T.E. Bureau (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol. 22: 2084–2089.

    Article  PubMed  CAS  Google Scholar 

  • Craig, N.L. (1996) Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27–48.

    PubMed  CAS  Google Scholar 

  • Cresse, A. D., S. H. Hulbert, W. E. Brown, J. R. Lucas and J. L. Bennetzen (1995) Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics 140:315–324.

    PubMed  CAS  Google Scholar 

  • Dawe, K. and S. Henikoff (2006) Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31: 662–669.

    Article  PubMed  CAS  Google Scholar 

  • Devos, K.M., J.K.M. Brown and J.L. Bennetzen (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075–1079.

    CAS  Google Scholar 

  • Dubcovsky, J., W. Ramakrishna, P. SanMiguel, C.S. Busso, L. Yan, B. A. Shiloff and J.L. Bennetzen (2001) Comparative sequence analysis of colinear barley and rice BACs. Plant Physiol. 125: 1342–1353.

    Article  PubMed  CAS  Google Scholar 

  • Ecker, J.R. and R.W. Davis (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sci. USA 83: 5372–5376.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush, T.H. (1997) Telomerase and retrotransposons: Which came first? Science 277: 911–912.

    Article  PubMed  CAS  Google Scholar 

  • Feuillet, C., A. Penger, K. Gellner, A. Mast and B. Keller (2001) Molecular evolution of receptorlike kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol. 125: 1304–1313.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H. and H.K. Dooner (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99: 9573–9578.

    PubMed  CAS  Google Scholar 

  • Gale, M.D., and K.M. Devos (1998) Plant comparative genetics after 10 years. Science 282: 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B.S. and J.F. Doebley (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809–6814.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W. (1978) Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Girard, L. and M. Freeling (1999) Regulatory changes as a consequence of transposon insertion. Dev. Genet. 25: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M.M., C.W. Stuber, K. Newton and H.H. Weissinger (1980) Linkage relationships of 19 enzyme loci in maize. Genetics 96: 697–710.

    PubMed  CAS  Google Scholar 

  • Gregory, T.R. (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95: 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., A. Gallavotti, G.A. Stryker, R.J. Schmidt and S.K. Lal (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol. Biol. 57: 115–27.

    Article  PubMed  CAS  Google Scholar 

  • Haberer, G., S. Young, A.K. Bharti, H. Gundlach, C. Raymond, G. Fuks, E. Butler, R.A. Wing, S. Rounsley, B. Birren, C. Nusbaum, K.F.X. Mayer and J. Messing (2005) Structure and architecture of the maize genome. Plant Phys. 139: 1612–1624.

    Article  CAS  Google Scholar 

  • Hake, S. and V. Walbot (1980) The genome of Zea mays, its organization and homology to related species. Chromosoma 79: 251–270.

    Article  CAS  Google Scholar 

  • Hamilton, A.J. and D.C. Baulcombe (1999) A novel species of small antisense RNA in post-transcriptional gene silencing. Science 286: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, J.S., HR. Kim, J.D. Nason, R.A. Wing and J. F. Wendel (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16: 1252–1261.

    Article  PubMed  CAS  Google Scholar 

  • Helentjaris, T., G. King, M. Slocum, C. Siedenstrang and S. Wedman (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant. Mol. Biol. 5: 109–118.

    Article  CAS  Google Scholar 

  • Helentjaris, T., D. Weber, and S. Wright (1988). Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphism. Genetics 118: 353–363.

    PubMed  CAS  Google Scholar 

  • Henikoff, S., K. Ahmad and H.S. Malik (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, F. C., C.J. Wang, C.M. Chen, H.Y. Hu and C.C. Chen (2003) Molecular characterization of a family of tandemly repeated DNA sequences, TR-1, in heterochromatic knobs of maize and its relatives. Genetics 164: 1087–1097.

    PubMed  CAS  Google Scholar 

  • Hudson, M.E., D.R. Lisch and P.H. Quail (2003) The FHY3 and FAR1 genes encode transposaserelated proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34: 453–471.

    Article  PubMed  CAS  Google Scholar 

  • Ilic, K., P.J. SanMiguel and J.L. Bennetzen (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum and rice genomes. Proc. Natl. Acad. Sci. USA 100: 12265–12270.

    Article  PubMed  CAS  Google Scholar 

  • IRGSP [International Rice Genome Sequencing Project] (2005) The map-based sequence of the rice genome. Nature 436: 793–800.

    Article  CAS  Google Scholar 

  • Jiang, N., Z. Bao, X. Zhang, S.R. Eddy and S.R. Wessler (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y.-K. and J.L. Bennetzen (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186.

    Article  PubMed  CAS  Google Scholar 

  • Johns, M.A., J. Mottinger and M. Freeling (1985) A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1101.

    PubMed  CAS  Google Scholar 

  • Johns, M.A., J.N. Strommer and M. Freeling (1983) Exceptionally high levels of restriction site polymorphism in DNA near the maize adh1 gene. Genetics 105: 733–743.

    PubMed  CAS  Google Scholar 

  • Kapitonov, V.V. and J. Jurka (2001) Rolling-circle transposons in eukaryotes.Proc. Natl. Acad. Sci. USA 98: 8714–9.

    Article  PubMed  CAS  Google Scholar 

  • Kirik, A., S. Salomon and H. Puchta (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19: 5562–5566

    Article  PubMed  CAS  Google Scholar 

  • Kolkman, J.M., L.J. Conrad, P.R. Farmer, K. Hardeman, K.R. Ahern, P.E. Lewis, R.J.H. Sawers, S. Lebejko, P. Chomet and T.P. Brutnell (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis.Genetics 169: 981–995.

    Article  PubMed  CAS  Google Scholar 

  • Kriz, A.L., R.S. Boston and B.A. Larkins (1987) Structural and transcriptional analysis of DNA sequences flanking genes that encode 19 kilodalton zeins. Mol. Gen. Genet. 207: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Lai, J., J. Ma, Z. Swigonova, W. Ramakrishna, E. Linton, V. Llaca, B. Tanyolac, Y.-J. Park, O.-Y. Jeong, J.L. Bennetzen, and J. Messing (2004) Gene loss and movement in the maize genome. Genome Res. 14: 1924–1931.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S.K., M.J. Giroux, V. Brendel, C.E. Vallejos and L.C. Hannah (2003) The maize genome contains a Helitron insertion. Plant Cell 15: 381–91.

    Article  PubMed  CAS  Google Scholar 

  • Levis, R.W., R. Ganesan, K. Houtchens, L.A. Tolar and F.M. Sheen (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.-N., and I. Rubenstein (1992) Genomic organization of an alpha-zein gene cluster in maize. Mol. Gen. Genet. 321: 304–312.

    Google Scholar 

  • Liu, R., C. Vitte, J. Ma, A.A. Mahama, T. Dhliwayo, M. Lee and J.L. Bennetzen (2007) A GeneTrek analysis of the maize genome. Proc. Natl. Acad. Sci. USA 104: 11844–11849.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R. and J.L. Bennetzen (2008) ENCHILADA REDUX: How complete is your genome sequence? New Phytol. 179: 249–250.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., E. Betran, K. Thornton and W. Wang (2003) The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet. 4: 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., J. Lai, J. Messing and J.L. Bennetzen (2005) DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and J.L. Bennetzen (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. USA 101: 12404–12410.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J. and J.L. Bennetzen (2006) Recombination, rearrangement, reshuffling and divergence in a centromeric region of rice. Proc. Natl. Acad. Sci. USA 103: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., K.M. Devos and J.L. Bennetzen (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14: 860–869.

    Article  PubMed  CAS  Google Scholar 

  • Mallet, F., O. Bouton, S. Prudhomme, V. Cheynet, G. Oriol, B. Bonnaud, G. Lucotte, L. Duret and B. Mandrand (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA 101: 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  • Mariño-Ramírez, L., K.C. Lewis, D. Landsman and I.K. Jordan (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet. Genome Res. 110: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1929) Chromosome morphology in Zea mays. Science 69: 629.

    Google Scholar 

  • McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.

    PubMed  CAS  Google Scholar 

  • McClintock, B. (1948) Mutable loci in maize. Carnegie Inst. Wash. Yearbook 47: 155–169.

    Google Scholar 

  • McClintock, B. (1960) Chromosome constitutions of Mexican and Guatelmalan races of maize. Carnegie Inst. Wash. Yearbook 59: 461–472.

    Google Scholar 

  • McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Messing J., A.K. Bharti, W.M. Karlowski, H. Gundlach, H.R. Kim, Y. Yu, F. Wei, G. Fuks, C.A. Soderlund, K.F.X. Mayer and R.A. Wing (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B.C., S.V. Tingey and M. Morgante (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11: 1660–1676.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, P., R. Hen, B. Wasylyk, R. Everett, M.P. Gaub and P. Chambon (1981) The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucl. Acids Res. 9: 6047–6068.

    Article  PubMed  CAS  Google Scholar 

  • Morgante, M., S. Brunner, G. Pea, K. Fengler, A. Zuccolo and A. Rafalski (2005) Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37: 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, E.D. and J.L. Bennetzen (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res., in press.

    Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication. Springer, Berlin.

    Google Scholar 

  • Peacock, W.J., E.S. Dennis, M.M. Rhoades and A.J. Pryor (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Natl. Acad. Sci. USA 78: 4490–4494.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, R.L. (1978) Molecular cytogenetics of the nucleolus organizer region. In: Walden, D.B. (Ed.) Maize Breeding and Genetics, chapter 43. John Wiley and Sons, New York.

    Google Scholar 

  • Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Saniyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing and O. Panaud. (2006) Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16: 1262–1269.

    Article  PubMed  CAS  Google Scholar 

  • Priyapongsa, J. and I.K. Jordan (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14: 814–821.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., J. Dubcovsky, Y.-J. Park, C. Busso, J. Emberton, P. SanMiguel and J.L. Bennetzen (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162: 1389–1400.

    PubMed  CAS  Google Scholar 

  • Rayburn, A.L., D.P. Biradar, D.G. Bullock and L.M. McMurphy (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300.

    Article  CAS  Google Scholar 

  • Rhoades, M.M. (1942) Preferential segregation in maize. Genetics 27: 395–407.

    PubMed  CAS  Google Scholar 

  • Rhoades, M.M. (1951) Duplicate genes in maize. Amer. Nat. 85: 105–110.

    Article  Google Scholar 

  • Roman, H. (1948) Directed fertilization in maize. Proc. Natl. Acad. Sci. USA 34: 36–42.

    Article  Google Scholar 

  • Rostoks, N., Y.-J. Park, W. Ramakrishna, J. Ma, A. Druka, B.A. Shiloff, P.J. SanMiguel, Z. Jiang, R. Brueggeman, D. Sandhu, K. Gill, J.L. Bennetzen and A. Kleinhofs (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Functional and Integrative Genomics 2: 70–80.

    Article  CAS  Google Scholar 

  • SanMiguel, P., A. Tikhonov, Y.-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova and J.L. Bennetzen (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima and J.L. Bennetzen (1998) The paleontology of intergene retrotransposons of maize. Nat. Genet. 20: 43–45.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., and J.L. Bennetzen (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals Bot. 82: 37–44.

    Article  CAS  Google Scholar 

  • SanMiguel, P.J., W. Ramakrishna, J.L. Bennetzen, C.S. Busso and J. Dubcovsky (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Functional and Integrative Genomics 2: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • SGPWP [Sorghum Genomics Planning Workshop Participants] (2005) Toward sequencing the sorghum genome. A U.S. National Science Foundation-sponsored workshop report. Plant Physiol. 138: 1898–1902.

    Article  CAS  Google Scholar 

  • Shirasu, K., A.H. Schulman, T. Lahaye and P. Schulze-Lefert (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., and J. Messing (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad. Sci. USA 100: 9055–9060.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., V. Llaca and J. Messing (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res. 12: 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  • Stam, M., C. Belele, W. Ramakrishna, J. Dorweiler, J.L. Bennetzen and V.L. Chandler (2002) The regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162: 917–930.

    PubMed  CAS  Google Scholar 

  • Swigonova, Z., J. Lai, J. Ma, W. Ramakrishna, V. Llaca, J.L. Bennetzen and J. Messing (2004) Close split of sorghum and maize genome progenitors. Genome Res. 14: 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  • Talbert, L.E. and V.L. Chandler (1988) Characterization of a highly conserved sequence related to mutator transposable elements in maize. Mol. Biol. Evol. 5: 519–529.

    PubMed  CAS  Google Scholar 

  • Tikhonov, A. P., J.L. Bennetzen and Z. Avramova (2000) Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell 12: 249–264.

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov, A.P., P.J. SanMiguel, Y. Nakajima, N.D. Gorenstein, J.L. Bennetzen and Z. Avramova (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409–7414.

    Article  PubMed  CAS  Google Scholar 

  • Vitte, C. and J.L. Bennetzen (2006) Analysis of retrotransposon diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA 103: 17638–17643.

    Article  PubMed  CAS  Google Scholar 

  • Volff, J.-N. (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28: 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. and H.K. Dooner (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. USA 103:17644–17649.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., H. Zheng, C. Fan, J. Li, J. Shi, Z. Cai, G. Zhang, D. Liu, J. Zhang, S. Vang, Z. Lu, G.K. Wong, M. Long and J. Wang (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18: 1791–1802.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., E. Coe, W. Nelson, A.K. Bharti, F. Engler, E. Butler, H. Kim, J.L. Goicoechea, M. Chen, S. Lee, G. Fuks, H. Sanchez-Villeda, S. Schroeder, Z. Fang, M. McMullen, G. Davis, J.E. Bowers, A.H. Paterson, M. Schaeffer, J. Gardiner, K. Cone, J. Messing, C. Soderlund and R.A. Wing (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet.. 3: e123.

    Article  PubMed  CAS  Google Scholar 

  • Wendel, J.F., R.C. Cronn, I. Alverez, B. Liu, R.L. Small and D.S. Senchina (2002) Intron size and genome size in plants. Mol. Biol. Evol. 19: 2346–2352.

    PubMed  CAS  Google Scholar 

  • Wicker, T., B. Keller (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 17: 1072–1081.

    Article  PubMed  CAS  Google Scholar 

  • White, S.E., L. F. Habera and S.R. Wessler (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of the gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W.A., S.E. Harrington, W.L. Woodman, M. Lee, M.E. Sorrells and S.R. McCouch (1999) Inferences on the genomes structure of progenitor maize through comparative analysis of rice, maize and domesticated panicoids. Genetics 153: 453–473.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., J. Arbuckle and S.R. Wessler (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. USA 97: 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld, B.J.M., I.J. Leitch and M.D. Bennett (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96: 229–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Bennetzen, J.L. (2009). Maize Genome Structure and Evolution. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_9

Download citation

Publish with us

Policies and ethics