Skip to main content

Cytogenetics and Chromosomal Structural Diversity

  • Chapter
Handbook of Maize

The cytogenetics of maize can be traced to the pioneering work of Barbara McClintock, who first defined the ten chromosomes of maize at the pachytene stage of meiosis (McClintock 1929). The chromosomes at this stage are not as condensed as in somatic cells and have many distinguishing characteristics such as knob heterochromatin, chromomere patterns and arm ratios that permit each member of the karyotype to be identified. This seminal contribution allowed the genetic linkage groups to be associated with the respective chromosome and initiated a series of findings ranging from the demonstration of the cytological basis of crossing over to the nature of chromosomal aberrations such as inversions, translocations, deficiencies and ring chromosomes (see Birchler et al. 2004). This ability to identify each chromosome and its structure allowed the analysis of the Breakage-Fusion-Bridge (BFB) cycle that led to the concept of the need for a special structure at the ends of natural chromosomes (McClintock 1939; 1941), now referred to as the telomere. Cytological analysis was also important in the early recognition of transposable elements as the means to detect the fact that Disssociation changed its site for induction of chromosomal breakage (McClintock, 1950).

As alluded to above, the central fact of maize cytogenetics is that the gametic number of chromosomes is 10 and thus the sporophytic number is 20. The chromosomes were numbered from 1 to 10 in descending order of size, although variation exists in length due to the presence of extensive knob heterochromatin in different varieties. There is also variation for arm ratios due to small inversions surrounding the centromeres of some chromosomes (McClintock 1933; Lamb et al. 2007b). Monoploid as well as triploid to octoploid maize have been reported, although tetraploid varieties are the only other ploidy than diploidy that can be maintained from one generation to the next. This is due to the random assortment of chromosomes in monoploid and triploids or to sterility of the higher ploidies (Rhoades and Dempsey 1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfenito, M.R. and J. A. Birchler, J.A. (1993) Molecular characterization of a maize B-chromosome centric sequence. Genetics 135, 589–597.

    PubMed  CAS  Google Scholar 

  • Amarillo, F.I.E. and Bass, H.W. (2007) A transgenomic cytogenetic sorghum (Sorghum propinquum) BAC FISH map of maize (Zea maysL.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics (in press).

    Google Scholar 

  • Ananiev, E., Riera-Lizarazu, O., Rines, H. and Phillips, R.L. (1997) Oat-maize chromosome addition lines: A new system for mapping the maize genome. Proc. Nat. Acad. Sci. USA 94, 3524–3529.

    Article  PubMed  CAS  Google Scholar 

  • Ananiev, E., Phillips, R.L. and Rines, H. (1998a) Chromosome-specific molecular organization of maize (Zea maysL.) centromeric regions. Proc. Nat. Acad. Sci.USA 95, 13073–13078.

    Article  CAS  Google Scholar 

  • Ananiev, E., Phillips, R.L. and Rines, H. (1998b) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc. Nat. Acad. Sci. USA 95, 10785–10790.

    Article  CAS  Google Scholar 

  • Anderson L.K., Doyle, G.G., Brigham, B., Carter, J., Hooker, K.D., Lai, A., Rice, M. and Stack, S.M. (2003) High-resolution crossover maps for each bivalent of Zea maysusing recombination nodules. Genetics 165, 849–865

    PubMed  CAS  Google Scholar 

  • Anderson, L.K., Salameh, H., Bass, H.W., Harper, L.C., Cande, W.Z., Weber, G. and Stack, S.M. (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize.Genetics 166, 1923–1933.

    Article  PubMed  CAS  Google Scholar 

  • Auger, D.L. and Sheridan, W. F. (1999) Maize stocks modified to enhance the recovery of Ac-induced mutations. J. Hered. 90, 453–459.

    Article  CAS  Google Scholar 

  • Bauer, M.J. and Birchler, J.A. (2006) Organization of endoreduplicated chromosomes in the endosperm of Zea maysL. Chromosoma 115, 383–394.

    Article  Google Scholar 

  • Beckett, J.B. (1978) B-A translocations in maize. J. Heredity 69, 27–36.

    Google Scholar 

  • Biradar, D.P. and Rayburn, A.L. (1993) Intraplant nuclear DNA content variation in diploid nuclei of maize (Zea maysL.). J. Exp. Bot. 44, 1039–1044.

    Article  CAS  Google Scholar 

  • Biradar, D. P., Rayburn, A.L. and Bullock, D.G. (1993) Endopolyploidy in diploid and tetraploid maize (Zea maysL.). Annals of Botany 71, 417–421.

    Article  Google Scholar 

  • Birchler, J.A. (1980) The cytogenetic localization of the alcohol dehydrogenase-1locus in maize. Genetics 94, 687–700.

    PubMed  CAS  Google Scholar 

  • Birchler, J.A. (1981) The genetic basis of dosage compensation of alcohol dehydrogenase-1in maize. Genetics 97, 625–637.

    PubMed  CAS  Google Scholar 

  • Birchler, J.A., Auger, D.L. and Kato, A. (2004) Cytogenetics of corn. IN: Corn: Origin, History, Technology and Production. Edited by C. Wayne Smith, Javier Betran and Ed Runge. John Wiley and Sons, New York.

    Google Scholar 

  • Buckler, E., Phelps-Durr, T.L., Buckler, C.S., Dawe, R.K., Doebley, J.F. and Holtsford, T.P. (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153, 415–426.

    PubMed  CAS  Google Scholar 

  • Burr, B., Burr, F.A., Matz, E.C. and Romero-Severson, J. (1992) Pinning down loose ends: mapping telomeres and factors affecting their lengths. Plant Cell 4, 953–960.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, W.R. (1978). The B chromosome of corn. Annu Rev Genet 12, 5–23.

    Article  PubMed  CAS  Google Scholar 

  • Chao, S., Gardiner, J.M., Melia-Hancock, S. and Coe, E.H., Jr. (1996) Physical and genetic mapping of chromosome 9S in maize using mutations with terminal deficiencies. Genetics 143, 1785–1794.

    PubMed  CAS  Google Scholar 

  • Chen C.C., Chen, C.M., Hsu, F.C., Wang, C.J., Yang, J.T. and Kao, Y. Y. (2000) The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theor. Appl. Genet. 101, 30–36.

    Article  CAS  Google Scholar 

  • Cheng, Y.M. and Lin, B.Y. (2004) Molecular organization of large fragments in the maize B chromosome: indication of a novel repeat. Genetics 166, 1947–1961.

    Article  PubMed  CAS  Google Scholar 

  • Coe, E.H. (1959) A line of maize with high haploid frequency. Am. Naturalist 93, 381–382.

    Article  Google Scholar 

  • Danilova, T.V. and Birchler, J.A. (2008) Integrated cytogenetic map of mitotic metaphase chromo-some9 of maize, resolution, sensitivity and binding paint development. Chromosoma 117, 345–356.

    Article  PubMed  Google Scholar 

  • Dempsey, E. (1994) Traditional analysis of maize pachytene chromosomes. Freeling, M. and V. Walbot (Ed.). The Maize Handbook. Springer-Verlag New York, Inc.: New York, New York, pp 432–441.

    Google Scholar 

  • Gardiner, J.M., Coe, E.H. and Chao, S. (1996) Cloning maize telomeres by complementation in Saccharomyces cerevisiae. Genome 39, 736–748.

    Article  PubMed  CAS  Google Scholar 

  • Gopinath, D. and Burnham, C.R. (1956) A cytogenetic study in maize of deficieny-duplication produced by crossing interchange involving the same chromosomes. Genetics 41, 382–395.

    PubMed  CAS  Google Scholar 

  • Han, F., Lamb, J.C. and Birchler, J.A. (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. USA 103, 3238–3243.

    Article  PubMed  CAS  Google Scholar 

  • Han, F., Lamb, J.C., Yu, W., Gao, Z. and Birchler, J.A. (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. The Plant Cell 19, 524–533.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A. (1997a) An improved method for chromosome counting in maize. Biotech. Histochem. 72, 249–252.

    Article  CAS  Google Scholar 

  • Kato, A. (1997b) Induced single fertilization in maize. Sex. Plant. Reprod. 10, 96–100.

    Article  Google Scholar 

  • Kato, A. (1999a) Air drying method using nitrous oxide for chromosome counting in maize. Biotech. Histochem. 74, 160–166.

    Article  CAS  Google Scholar 

  • Kato, A. (1999b) Induction of bicellular pollen by trifluralin treatment and occurrence of triploids and aneuploids after fertilization in maize. Genome 42, 154–157.

    Article  Google Scholar 

  • Kato, A. (1999c) Single fertilization in maize. J Hered. 90, 276–280.

    Article  Google Scholar 

  • Kato, A., Albert, P.S., Vega, J.M. and Birchler, J.A. (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotechnic & Histochemistry 81, 71–78.

    Article  Google Scholar 

  • Kato, A. and Birchler, J.A. (2006) Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. Journal of Heredity 97, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Lamb, J.A. and Birchler, J.A. (2004) Chromosome painting in maize using repetitive DNA sequences as probes for somatic chromosome identification. Proc. Natl. Acad. Sci. USA 101, 13554–13559.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Zheng, Y.-Z., Auger, D.L., Phelps-Durr, T., Bauer, M.J., Lamb, J.C. and Birchler, J.A. (2005) Minichromosomes derived from the B chromosome of maize. Cytogenetic and Genome Research 109, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Kermicle, J.L. (1969) Androgenesis conditioned by a mutation in maize. Science 166, 1422–1424.

    Article  PubMed  Google Scholar 

  • Koumbaris, G.L. and Bass, H.W. (2003) A new single-locus cytogenetic mapping system for maize (Zea maysL.): overcoming FISH detection limits with marker-selected sorghum (S. propinquumL.) BAC clones. Plant J 35, 647–59.

    Article  PubMed  CAS  Google Scholar 

  • Kowles, R. V. and Phillips, R.L. (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc. Natl. Acad. Sci. USA 82, 7010–7014.

    Article  PubMed  CAS  Google Scholar 

  • Kowles, R.V., Srienc, F. and Phillips, R.L. (1990) Endoreduplication of nuclear DNA in the developing maize endosperm. Dev. Genet. 11, 125–132.

    Article  CAS  Google Scholar 

  • Kynast, R.G., Riera-Lizarazu, O., Vales, M.I., Okagaki, R.J., Maquieira, S.B., G. Chen, G., Ananiev, E.V., Odland, W.E., Russell, C.D., Stec, A.O., Zaia, S.M., Rines, H.W., and Phillips, R.L.(2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol. 125, 1216–1227.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J.C., Kato, A., and Birchler, J.A. (2005) Centromere associated sequences are present throughout the maize B chromosome. Chromosoma 113, 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J.C. and Birchler, J.A. (2006) Retroelement Genome Painting: Cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173, 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J.C., Danilova, T., Bauer, M.J., Meyer, J., Holland, J.J., Jensen, M.D. and Birchler, J.A. (2007a) Single gene detection and karyotyping using small target FISH on maize somatic chromosomes. Genetics 175, 1047–1058.

    Article  CAS  Google Scholar 

  • Lamb, J.C., Meyer, J.M., Corcoran, B., Kato, A., Han, F. and Birchler, J.A. (2007c) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Research 15, 33–49.

    Article  CAS  Google Scholar 

  • Lamb, J.C., Meyer, J.M. and Birchler, J.A. (2007b) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116, 237–247.

    Article  CAS  Google Scholar 

  • Lamb, J.C., Riddle, N.C., Cheng, Y., Theuri, J. and Birchler, J.A. (2007d) Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Research 15, 33–49.

    Article  CAS  Google Scholar 

  • Lawrence, C.J., Seigfried, T.E., Bass, H.W. and Anderson, L.K. (2006) Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator. Genetics 172, 2007–2009.

    Article  PubMed  CAS  Google Scholar 

  • Lin, B.-Y. (1978) Regional control of nondisjunction of the B chromosome in maize. Genetics 90, 613–627.

    PubMed  Google Scholar 

  • Longley, A. (1927) Supernumerary chromosomes in Zea mays. Journal of Ag. Research 35, 769–784.

    Google Scholar 

  • Longley, A. (1961) Breakage points for four corn translocation series and other corn chromosome aberrations. USDA-ARS Crops Research BulletinNo. 34–16, 1–40.

    Google Scholar 

  • Lough, A., Roark, L, Kato, A., Ream, T.S., Lamb, J.C., Birchler, J.A. and Newton, K.J. (2008) Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize. Genetics, in press.

    Google Scholar 

  • Lugert, T. and Werr, W. (1994) A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). Plant Mol Biol 25, 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Devos, K.M. and Bennetzen, J.L. (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14, 860–869.

    Article  PubMed  CAS  Google Scholar 

  • Marian, C.O., Bordoli, S.J., Goltz, M., Santarella, R.A., Jackson, L.P., Danilevskaya, O., Beckstette, M., Meeley, R. and Bass, H.W. (2003) The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol 133, 1336–50.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1933) The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in Zea mays. Z Zellforsch Mikrosk Anat 19, 191–237

    Article  Google Scholar 

  • Maguire, M.P. (1987) Meiotic behavior of a tiny fragment chromosome that carries a transposed centromere. Genome 29, 744–747.

    PubMed  CAS  Google Scholar 

  • McClintock, B. (1929) Chromosome morphology in Zea mays. Science 69, 629–630.

    Article  PubMed  Google Scholar 

  • McClintock, B. (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl. Acad. Sci. USA 25, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282.

    PubMed  CAS  Google Scholar 

  • McClintock, B. (1950) The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36, 344–355.

    Article  PubMed  CAS  Google Scholar 

  • Mol, R., Matthys-Rochon, E. and Dumas, C. (1994) The kinetics of cytological events during double fertilizatioin in Zea maysL. The Plant Journal 5, 197–206.

    Article  Google Scholar 

  • Page, B.T., Wanous, M.K. and Birchler, J.A. (2001) Characterization of a maize chromosome 4 centromeric sequence: Evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159, 291–302.

    PubMed  CAS  Google Scholar 

  • Peacock, W.J., Dennis, E.S., Rhoades, M.M. and Pryor, A.J. (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Natl. Acad. Sci. USA 78, 4490–4494.

    Article  PubMed  CAS  Google Scholar 

  • Rakha, F.A. and Robertson, D.S. (1970) A new technique for the productioin of A-B translocations and their use in genetic analysis. Genetics 65, 223–240.

    PubMed  Google Scholar 

  • Randolph, L.F. (1928) Types of supernumerary chromosomes in maize. Anatomical Record 41, 102.

    Google Scholar 

  • Rhoades, M.M. (1955) The cytogenetics of corn. IN: G. F. Sprague (ed.), Corn and Corn Improvement. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI. pp. 123–219.

    Google Scholar 

  • Rhoades, M.M. and Dempsey, E. (1966) Induction of chromosome doubling at meiosis by the elongategene in maize. Genetics 54, 505–522.

    PubMed  Google Scholar 

  • Rhoades, M.M. (1942) Preferential segregation in maize. Genetics 27, 395–407.

    PubMed  CAS  Google Scholar 

  • Richards, E.J. and Ausubel, F.M. (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Roman, H.L. (1947) Mitotic nondisjunction in the case of interchanges involving the B- type chromosome in maize. Genetics 32, 391–409.

    PubMed  CAS  Google Scholar 

  • Roman, H.L. (1948) Directed fertilization in maize. Proc. Natl. Acad. Sci. USA 34, 36–42.

    Article  Google Scholar 

  • Rusche, M., Mogensen, H.L., Chaboud, A., Faure, J.E., Rougier, M., Kiem, P. and Dumas, C. 2001. B chromosomes of maize (Zea maysL.) are positioned nonrandomly within sperm nuclei. Sex Plant Reprod. 13, 231–234.

    Article  Google Scholar 

  • Rusche, M., Mogensen, H.L., Shi, L., Keim, P., Rougier, M., Chaboud, A. and Dumas, C. (1997) B chromosome behavior in maize pollen as determined by a molecular probe. Genetics 147, 1915–1921.

    PubMed  CAS  Google Scholar 

  • Sadder, M., Ponelies, N., Born, U., and Weber, G. (2000) Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea maysL.) by chromosome in situ suppression hybridization. Genome 43, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennetzen, J.L. (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20, 43–45.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, W.F. and Auger, D.L. (2006) Construction and uses of new compound B-A-A maize chromosome translocations. Genetics 174, 1755–1765.

    Article  PubMed  CAS  Google Scholar 

  • Shi, L., Zhu, T., Mogensen, H.L. and Keim, P. (1996) Sperm identification in maize by fluorescence in situ hybridization. Plant Cell 8, 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Stupar, R.M., Lilly, J.W., Town, C.D., Cheng, Z., Kaul, S., Buell, C.R. and Jiang, J. (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thalianachromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc. Natl. Acad. Sci., USA 98, 5099–5103.

    Article  PubMed  CAS  Google Scholar 

  • Theuri, J., Phelps-Durr, T., Mathews, S. and Birchler, J.A. (2005) A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize. Cytogenetic and Genome Research 110, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht, E., and Hake, S. (1995) Deficiency analysis of female gametogenesis in maize. Dev. Genet. 16, 44–63.

    Article  Google Scholar 

  • Wang, C.J., Harper, L. and Cande, W.Z. (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18, 529–544.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E. (1973) Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 73, 387–391.

    PubMed  Google Scholar 

  • Weber, D.F. (1994) Use of maize monosomics for gene localization and dosage studies. In: The Maize Handbook. M. Freeling and V. Walbot, Editors. Springer-Verlag, NY pp. 350–358.

    Google Scholar 

  • Yu, W., Lamb, J.C., Han, F. and Birchler, J.A. (2006) Telomere-mediated chromosomal truncation in maize. Proc. Natl. Acad. Sci. USA 103, 17331–17336.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Lamb, J.C., Han, F. and Birchler, J.A. (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175, 31–39.

    Article  PubMed  Google Scholar 

  • Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci., USA 104, 8924–8929.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Q., Hill, J., Hsiao, J., Moffat, K., Ouyang, S., Cheng, Z., Jiang, J. and Buell, C.R. (2002) Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Molecular Genetics and Genomics 267, 713–720.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z. and Weber, D.F. (1988) Analysis of nondisjunction induced by the r-X1deficiency during microsporogenesis in Zea maysL. Genetics 119, 975–980.

    PubMed  Google Scholar 

  • Zheng, Y-Z., Roseman, R.R. and Carlson, W.R. (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153, 1435–1444.

    PubMed  CAS  Google Scholar 

  • Zwick, M. S., Islam-Faridi, M.N., Czeschin, D.G.J., Wing, R.A., Hart, G.E., Stelly, D.M. and Price, H.J. (1998) Physical mapping of the ligulelesslinkage group in Sorghum bicolorusing rice RFLP-selected sorghum BACs. Genetics 148, 1983–1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Birchler, J.A., Bass, H.W. (2009). Cytogenetics and Chromosomal Structural Diversity. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_8

Download citation

Publish with us

Policies and ethics