Skip to main content

Challenges in the Development of High Protein Concentration Formulations

  • Chapter
  • First Online:
Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Development of formulations for protein drugs requiring high dosing (on the order of mg/kg) may become challenging for solubility limited proteins and for the SC route with <1.5 mL allowable administration volume that requires >100 mg/mL protein concentrations. Development of high protein concentration formulations also results in several manufacturing, stability, analytical, and delivery challenges. The high concentrations achieved by small scale approaches used in preformulation studies would have to be confirmed with manufacturing scale processes and with representative materials because of the lability of protein conformation and the propensity to interact with surfaces and solutes which render protein solubilities that are dependent on the process of concentrating. The concentration dependent degradation route of aggregation is the greatest challenge to developing protein formulations at these higher concentrations. In addition to the potential for nonnative protein aggregation and particulate formation, reversible self-association may occur, which contributes to properties such as viscosity that complicates delivery by injection. Higher viscosity also complicates manufacturing of high protein concentrations by filtration approaches. Chromatographic and electrophoretic assays may not accurately determine the non-covalent higher molecular weight forms because of the dilutions that are usually encountered with these techniques. Hence, techniques must be used that allow for direct measurement in the formulation without substantial dilution of the protein. These challenges are summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahern TJ, Manning MC (eds) (1992) Stability of protein pharmaceuticals. Part A: Chemical and physical pathways of protein degradation. Plenum, New York, p 434

    Google Scholar 

  • Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbo­hydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5(2):E10

    Article  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1985) Theory of protein solubility. Methods Enzymol 114:49–77

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Kita Y, Carpenter JF (1991) Protein–solvent interactions in pharmaceutical formulations. Pharm Res 8(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Avis KE (1990) Parenteral preparations. In: Gennaro AR (ed) Remington’s pharmaceutical sciences, 18th edn. Mack Publishing Company, Easton, PA, pp 1545–1569

    Google Scholar 

  • Bloomfield VA (1981) Quasi-elastic light scattering applications in biochemistry and biology. Annu Rev Biophys Bioeng 10:421–450

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Kwee L, Labow MA, Alsenz J (1997) Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm Res 14(10):1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ (2001) Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res 18(9):1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Bull HB (1971) An introduction to physical biochemistry. F.A. David Company, Philadelphia, p 174

    Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical chemistry: Part II: Techniques for the study of biological structure and function. W. H. Freeman and Company, San Francisco, p 503

    Google Scholar 

  • Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res 14(8):969–975

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JF, Chang BS, Garzon-Rodriguez W, Randolph TW (2002) Rational design of stable lyophilized protein formulations: theory and practice. Pharm Biotechnol 13:109–133

    Article  CAS  PubMed  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20(9):1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation and oxidation. Crit Rev Ther Drug Carrier Syst 10(4):307–377

    CAS  PubMed  Google Scholar 

  • Cleland JL, Lam X, Kendrick B, Yang J, Yang TH, Overcashier D, Brooks D, Hsu C, Carpenter JF (2001) A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci 90(3):310–321

    Article  CAS  PubMed  Google Scholar 

  • Costantino HR, Chen B, Griebenow K, Hsu CC, Shire SJ (1998) Fourier-transform infrared spectroscopic investigation of the secondary structure of aqueous and dried recombinant human deoxyribonuclease I. Pharm Pharmacol Commun 4:391–395

    CAS  Google Scholar 

  • de la Torre JG (1992) Sedimentation coefficients of complex biological particles. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, England, pp 333–345

    Google Scholar 

  • Gatlin LA, Gatlin CAB (1999) Formulation and administration techniques to minimize injection pain and tissue damage associated with parenteral products. In: Gapta PK, Brazeau GA (eds) Injectable drug development: techniques to reduce pain and irritation. Interpharm Press, Denver, pp 401–421

    Google Scholar 

  • Gehlert G, Luque S, Belfort G (1998) Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions. Biotechnol Prog 14(6):931–942

    Article  CAS  PubMed  Google Scholar 

  • Genovesi CS (1983) Several uses for tangential-flow filtration in the pharmaceutical industry. J Parenter Sci Technol 37(3):81–86

    CAS  PubMed  Google Scholar 

  • Georgalis Y, Saenger W (1999) Light scattering studies on supersaturated protein solutions. Sci Prog 82(Pt 4):271–294

    CAS  PubMed  Google Scholar 

  • Glatz CE (1992) Modeling of aggregation-precipitation phenomena. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals. Plenum, New York, pp 135–166

    Google Scholar 

  • Harris LJ, Skaletsky E, McPherson A (1995) Crystallization of intact monoclonal antibodies. Proteins 23(2):285–289

    Article  CAS  PubMed  Google Scholar 

  • Hatley RHM (1990) International symposium on biological product freeze-drying and formulation, Bethesda, MD, pp 105–122

    Google Scholar 

  • Jenkins WT (1998) Three solutions of the protein solubility problem. Protein Sci 7(2):376–382

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Straume M (1994) Comments on the analysis of sedimentation equilibrium experiments. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhauser, Boston, pp 37–63

    Chapter  Google Scholar 

  • Jones AJS (1993) Analytical methods for the assessment of protein formulations and delivery systems. In: Cleland JL, Langer R (eds) Formulation and delivery of peptides and proteins. American Chemical Society, Washington, DC, pp 22–45

    Google Scholar 

  • Koren E, Zuckerman LA, Mire-Sluis AR (2002) Immune responses to therapeutic proteins in humans-clinical significance, assessment and prediction. Curr Pharm Biotechnol 3(4):349–360

    Article  CAS  PubMed  Google Scholar 

  • Leavis PC, Rothstein F (1974) The solubility of fibrinogen in dilute salt solutions. Arch Biochem Biophys 161(2):671–682

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11(9):2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lester P, Builder S, Shire SJ (1995) Characterization of complex formation by humanized anti-IgE monoclonal antibody and monoclonal human IgE. Biochemistry 34(33):10474–10482

    Article  CAS  PubMed  Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6(11):903–918

    Article  CAS  PubMed  Google Scholar 

  • Masters K (1985) Spray drying handbook. Wiley, New York

    Google Scholar 

  • Mattern M, Winter G, Kohnert U, Lee G (1999) Formulation of proteins in vacuum-dried glasses. II. Process and storage stability in sugar-free amino acid systems. Pharm Dev Technol 4(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • McPhillips CDQM, Royall PG, Hill VL (1999) Characterization of the glass transition of HPMC using modulated differential scanning calorimetry. Int J Pharm 180:83–90

    Article  CAS  PubMed  Google Scholar 

  • Melander W, Horvath C (1977) Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183(1):200–215

    Article  CAS  PubMed  Google Scholar 

  • Middaugh CR, Volkin DB (1992) Protein solubility. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals. Plenum, New York, pp 109–134

    Google Scholar 

  • Miller DP, Anderson RE, de Pablo JJ (1998) Stabilization of lactate dehydrogenase following freeze thawing and vacuum-drying in the presence of trehalose and borate. Pharm Res 15(8):1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1989) Analytical centrifugation with preparative ultracentrifuges. Anal Biochem 176:209–216

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1992) Confinement as a determinant of macromolecular structure and reactivity. Biophys J 63(4):1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Moore JM, Patapoff TW, Cromwell ME (1999) Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry 38(42):13960–13967

    Article  CAS  PubMed  Google Scholar 

  • Moshashaee S, Bisrat M, Forbes RT, Quinn EA, Nyqvist H, York P (2003) Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution. J Pharm Pharmacol 55(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Pearlman R, Nguyen TH (1991) Analysis of protein drugs. In: Lee VH (ed) Peptide and protein drug delivery. Marcel Dekker, New York, pp 247–301

    Google Scholar 

  • Pecora R (1972) Quasi-elastic light scattering from macromolecules. Annu Rev Biophys Bioeng 1:257–276

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Pikal MJ (1994) Freeze-drying of proteins: process, formulation and stability. In: Cleland JL, Langer R (eds) Formulation and delivery of proteins and peptides. American Chemical Society, Washington, DC, pp 120–133

    Chapter  Google Scholar 

  • Poupitch G (1994) Fluid bed drying in the laboratory. Am Biotechnol Lab 12(4):30–34

    CAS  PubMed  Google Scholar 

  • Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65(2):661–671

    Article  CAS  PubMed  Google Scholar 

  • Rothstein F (1994) Differential precipitation of proteins. Science and technology. Bioprocess Technol 18:115–208

    CAS  PubMed  Google Scholar 

  • Rouan SKE (1996) Biotechnology-based pharmaceuticals. In: Banker GS, Rhodes CT (eds) Modern pharmaceutics, 3rd edn. Marcel Dekker, New York, pp 843–873

    Google Scholar 

  • Saul A, Don M (1984) A rapid method of concentrating proteins in small volumes with high recovery using Sephadex G-25. Anal Biochem 138(2):451–453

    Article  CAS  PubMed  Google Scholar 

  • Schein CH (1990) Solubility as a function of protein structure and solvent components. Biotechnology 8(4):308–317

    Article  CAS  PubMed  Google Scholar 

  • Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75(3):1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82(2):1096–1111

    Article  CAS  PubMed  Google Scholar 

  • Schurr JM (1977) Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 4(4):371–431

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Kalonia DS (2003) Steady-state trytophan fluorescence spectrscopy study to probe tertiary structure of proteins in solid powders. J Pharm Sci 92(4):890–899

    Article  CAS  PubMed  Google Scholar 

  • Shenoy B, Wang Y, Shan W, Margolin AL (2001) Stability of crystalline proteins. Biotechnol Bioeng 73(5):358–369

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Martin N, Moes H (1988) Tangential flow filtration. Adv Biotechnol Processes 8:97–125

    CAS  PubMed  Google Scholar 

  • Shire SJ (1992) Analytical ultracentrifugation and its use in biotechnology. In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhauser, Boston, pp 261–297

    Google Scholar 

  • Tanabe S, Tesaki S, Watanabe M (2000) Producing a low ovomucoid egg white preparation by precipitation with aqueous ethanol. Biosci Biotechnol Biochem 64(9):2005–2007

    Article  CAS  PubMed  Google Scholar 

  • Thomas CR, Nienow AW, Dunnill P (1979) Action of shear on enzymes: studies with alcohol dehydrogenase. Biotechnol Bioeng 21(12):2263–2278

    Article  CAS  PubMed  Google Scholar 

  • Treuheit MJ, Kosky AA, Brems DN (2002) Inverse relationship of protein concentration and aggregation. Pharm Res 19(4):511–516

    Article  CAS  PubMed  Google Scholar 

  • van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211

    Article  PubMed  Google Scholar 

  • Watterson JG, Schaub MC, Waser PG (1974) Shear-induced protein–protein interaction at the air–water interface. Biochim Biophys Acta 356(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Webb SD, Webb JN, Hughes TG, Sesin DF, Kincaid AC (2002) Freezing bulk-scale biopharmaceuticals using common techniques – and the magnitude of freeze-concentration. Biopharm 15(5):2–8

    Google Scholar 

  • Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240(2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Wildfong PL, Samy AS, Corfa J, Peck GE, Morris KR (2002) Accelerated fluid bed drying using NIR monitoring and phenomenological modeling: method assessment and formulation suitability. J Pharm Sci 91(3):631–639

    Article  CAS  PubMed  Google Scholar 

  • Wilf J, Minton AP (1981) Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins. Biochim Biophys Acta 670(3):316–322

    Article  CAS  PubMed  Google Scholar 

  • Winters MA, Knutson BL, Debenedetti PG, Sparks HG, Przybycien TM, Stevenson CL, Prestrelski SJ (1996) Precipitation of proteins in supercritical carbon dioxide. J Pharm Sci 85(6):586–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Hjerten S (1997) A micromethod for concentration and desalting utilizing a hollow fiber with special reference to capillary electrophoresis. Anal Chem 69(8):1585–1592

    Article  CAS  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Robert Van Reis, Department of Recovery Sciences, Genentech Inc, for input on the TFF technologies, and Dr. Chung Hsu, Department of Pharmaceutical R&D, Genentech Inc., for discussions on bulk drying processes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Shire, S.J., Shahrokh, Z., Liu, J. (2010). Challenges in the Development of High Protein Concentration Formulations. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_9

Download citation

Publish with us

Policies and ethics