Skip to main content

Nanobodies, Single-Domain Antigen-Binding Fragments of Camelid Heavy-Chain Antibodies

  • Chapter
  • First Online:
Book cover Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Antibodies or immunoglobulins are glycoproteins produced by B-cells and play a central role in host immune defense. Antibodies can be elicited virtually against any substance. Moreover, the immune response to any given antigen can be diverse, comprising different antibodies exhibiting different affinities and/or epitope specificities. Due to their antigen specificity, high affinity and almost the limitless repertoire diversity, antibodies have placed themselves among the most attractive reagents for both fundamental and applied sciences.

Conventional antibodies are multimers of heavy (H) and light (L) chains, each chain consisting of variable (V) and constant (C) domains (Porter 1973; Padlan 1994). Naturally, in a conventional antibody, the variable region of the light chain (VL) and the variable region of the heavy chain (VH) combine to make the antigen binding site, although, in some cases, the heavy chain alone can also bind antigen (Utsumi and Karush 1964). The constant domains of antibodies are not involved in antigen recognition; the heavy chain constant regions CH2 and CH3 (Fc) are responsible for effector functions, which trigger the elimination of antigens (Fig. 3-1a) (Dwek et al. 1984; Burton 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CH:

Constant domain of the heavy chain

Fab:

Fragment antigen binding

Fv:

Fragment variable

H:

Heavy chain

HCAb:

Heavy-chain antibody

L:

Light chain

scFv:

Single chain fragment variable

VH:

Variable domain of the heavy chain of the conventional antibodies

VHH:

Variable domain of the heavy chain of the heavy-chain antibodies

VL:

Variable domain of the light chain of the conventional antibodies

References

  • Alvarez-Reuda N, Behar G, Ferré V, Pugnière M, Roquet F, Gastinel L, Jacquot C, Aubry J, Baty D, Barbet J, Birklè S (2007) Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol 44:1680–1690

    Article  CAS  Google Scholar 

  • Atarhouch T, Bendahman N, Hamers-Casterman C, Hamers R, Muyldermans S (1997) cDNA sequence coding for the constant region of the dromedary γ3 heavy chain antibody. J Camel Pract Res 4:177–182

    Google Scholar 

  • Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, Muyldermans S, De Baetselier P (2006) Experimental therapy of African trypanomisis with a nanobody-conjugated human trypanolytic factor. Nat Med 12:580–584

    Article  PubMed  CAS  Google Scholar 

  • Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy. Cancer 109:170–179

    Article  PubMed  CAS  Google Scholar 

  • Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J, Kaufman HL (2007) Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine 25:4183–4192

    Article  PubMed  CAS  Google Scholar 

  • Burton DR (1985) Immunoglobulin G: functional sites. Mol Immunol 22:161–206

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Garen A (1997) Comparison of fusion phage libraries displaying VH or single-chain Fv antibody fragments derived from the antibody repertoire of a vaccinated melanoma patient as a source of melanoma-specific targeting molecules. Proc Natl Acad Sci U S A 94:9261–9266

    Article  PubMed  CAS  Google Scholar 

  • Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  PubMed  CAS  Google Scholar 

  • Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54:531–545

    Article  PubMed  CAS  Google Scholar 

  • Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17:780–783

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Novotny J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186:651–663

    Article  PubMed  CAS  Google Scholar 

  • Clauss MA, Jain RK (1990) Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res 50:3487–3492

    PubMed  CAS  Google Scholar 

  • Cogne M, Preud’homme JL, Guglielmi P (1989) Immunoglobulins gene alterations in human heavy chain disease. Res Immunol 140:487–502

    Article  PubMed  CAS  Google Scholar 

  • Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S (2001) Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in Camelidae. Antimicrob Agents Chemother 45:2807–2812

    Article  PubMed  CAS  Google Scholar 

  • Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R (2005) Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic VH. J Mol Biol 350:112–125

    Article  PubMed  CAS  Google Scholar 

  • Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L et al (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856–1866

    Article  PubMed  CAS  Google Scholar 

  • Cortez-Retamozo V, Lauwereys M, Hassanzadeh GG, Gobert M, Conrath K, Muyldermans S, de Baetselier P, Revets H (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462

    Article  PubMed  CAS  Google Scholar 

  • Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De baetselier P, Muyldermans S, Revets H (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853–2857

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Riechmann L (1994) ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 339:285–290

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Riechmann L (1995) Antibody VH domains as small recognition units. Biotechnology 13:475–479

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537

    Article  PubMed  CAS  Google Scholar 

  • De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591

    Article  PubMed  CAS  Google Scholar 

  • de Haard HJW, Bezemer S, Ledeboer AM, Müller WH, Boender PJ, Moineau S, Coppelmans M-C, Verkleij AJ, Frenken LGJ, Verrips CT (2005) Llama antibodies against a lactococcal protein located at the tip of the phage tailprevent phage infection. J Bacteriol 187:4531–4541

    Article  PubMed  CAS  Google Scholar 

  • Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L (1999) A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7:361–370

    Article  PubMed  CAS  Google Scholar 

  • Decanniere K, Muyldermans S, Wyns L (2000) Canonical antigen binding loop structures: more structures, more canonical classes? J Mol Biol 300:83–91

    Article  PubMed  CAS  Google Scholar 

  • Dennis M, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277:35035–35043

    Article  PubMed  CAS  Google Scholar 

  • Desmyter A, Transue TR, Ghahroudi MA, Dao Thi MH, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811

    Article  PubMed  CAS  Google Scholar 

  • Desmyter A, Decanniere K, Muyldermans S, Wyns L (2001) Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 276:26285–26290

    Article  PubMed  CAS  Google Scholar 

  • Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, Cambillau C (2002) Three cameli VHH domains in complex with porcine α-amylase. J Biol Chem 277:23645–23650

    Article  PubMed  CAS  Google Scholar 

  • Dolk E, van der Vaart M, Hulsik DL, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T (2005) Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol 71:442–450

    Article  PubMed  CAS  Google Scholar 

  • Dufner P, Jermutus L, Minter RR (2006) Harnessing phage and ribosome display for antibody optimization. Trends Biotechnol 24:523–529

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin M, Conrath K, van Meirhaeghe A, Meersman F, Heremans K, Frenken LGJ, Muyldermans S, Wyns L, Matagne A (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S et al (2003) A camelid antibody fragment inhibits the formation of amyloid fibrils human lysozyme. Nature 424:783–788

    Article  PubMed  CAS  Google Scholar 

  • Dwek RA, Sutton BJ, Perkins SJ, Rademacher TW (1984) Structure–function relationships in immunoglobulins. Biochem Soc Symp 49:123–136

    PubMed  CAS  Google Scholar 

  • El Khattabi M, Adams H, Heezius E, Hermans P, Detmers F, Maassen B, van der Ley P, Tommassen J, Verrips T, Stam J (2006) Llama single-chain antibody that blocks lipopolysaccharide binding and signaling: prospects for therapeutic applications. Clin Vaccine Immunol 13:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Ewert S, Cambillau C, Conrath K, Pluckthun A (2002) Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry 41:3628–3636

    Article  PubMed  CAS  Google Scholar 

  • Fleischman JB, Pain RH, Porter RR (1962) Reduction of γ-globulins. Arch Biochem Biophys 1:174–180

    PubMed  CAS  Google Scholar 

  • Franklin EC, Lowenstein J, Bigelow B, Meltzer M (1964) Heavy chain disease. A new disorder of serum γ-globulins: report of the first case. Am J Med 37:332–350

    Article  PubMed  CAS  Google Scholar 

  • Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21

    Article  PubMed  CAS  Google Scholar 

  • Ghahroudi MA, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  Google Scholar 

  • Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255

    Article  PubMed  CAS  Google Scholar 

  • Graff CP, Wittrup KD (2003) Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res 63:1288–1296

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, Mckinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    Article  PubMed  CAS  Google Scholar 

  • Groot AJ, Verheesen P, Westerlaken EJ, Gort EH, van der Groep P, Bovenschen N, van der Wall E, van Diest PJ, Shvarts A (2006) Identification by phage display of single-domain antibody fragments specific for the ODD domain in hypoxia-inducible factor 1alpha. Lab Invest 86:345–356

    Article  PubMed  CAS  Google Scholar 

  • Gueorguieva D, Li S, Walsh N, Mukerji A, Tanha J, Pandey S (2006) Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J 20:2636–2638

    Article  PubMed  CAS  Google Scholar 

  • Hamers R, Muyldermans S (1998) Immunology of the camels and llamas. In: Pastoret PP, Griebel P, Bazin H, Govaerts A (eds) Handbook of vertebrate immunology. Academic, San Diego, CA, pp 421–438

    Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Bajyana Songa E, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446448

    Article  Google Scholar 

  • Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MM, Van Slot CB, Fijten HP, Van Setten MC (2005) Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 23:4926–4934

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MM, van Slot CB, Fijten HP, van Keulen L, Rosalia RA, Weerdmeester K, Cornelissen AH, De Bruin MG, Eblé PL, Dekker A (2007) Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 120:193–206

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M, Canevari S, Hartmann LC, Peng KW (2006) The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 12:6170–6178

    Article  PubMed  CAS  Google Scholar 

  • Hendershot LM (1990) Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J Cell Biol 111:829–837

    Article  PubMed  CAS  Google Scholar 

  • Hendershot LM, Bole D, Köhler G, Kearney JF (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104:761–767

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom HR, Chames P (2000) Natural and designer binding sites made by phage display technology. Immunol Today 21:371–378

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RMA, Arends JW, Roovers RC (1998) Antibody phage display technology and its applications. Immunotechnology 4:309–318

    Article  Google Scholar 

  • Huang L, Reekmans G, Saerens D, Friedt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C (2005a) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Verheesen P, Roussis A, Frankhuizen W, Ginjaar J, Haldane F, Laval S, Anderson LVB, Verrips T, Frants RR et al (2005b) Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display. Eur J Hum Genet 13:721–730

    Article  PubMed  CAS  Google Scholar 

  • Hulstein JJJ, de Groot PG, Silence K, Veyradier A, Fijnheer R, Lenting PJ (2005) A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B. Blood 106:3035–3042

    Article  PubMed  CAS  Google Scholar 

  • Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19

    Article  PubMed  CAS  Google Scholar 

  • Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21:77–80

    Article  PubMed  CAS  Google Scholar 

  • Joosten V, Roelofs MS, van den Dries N, Goosen T, Verrips CT, van den Hondel CA, Lokman BC (2005) Production of bifunctional proteins by Aspergillus awamori: llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP). J Biotechnol 120:347–359

    Article  PubMed  CAS  Google Scholar 

  • Klooster R, Maassen BTH, Stam JC, Hermans PW, ten Haaft MR, Detmers FJM, de Haard HJ, Post JA, Verrips CT (2007) Improved anti-IgG and HSA affinity ligands: clinical application of VHH antibody technology. J Immunol Methods 324:1–12

    Article  PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Reyelt J, Schössow B, Schwarz N, Scheuplein F, Rothenburg S, Haag F, Alzogaray V, Cauerhff A, Goldbaum FA (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498

    Article  PubMed  CAS  Google Scholar 

  • Kortt AA, Guthrie RE, Hinds MG, Power BE, Ivancic N, Caldwell JB, Gruen LC, Norton RS, Hudson PJ (1995) Solution properties of Escherichia coli-expressed VH domain of anti-neuraminidase antibody NC41. J Protein Chem 14:167–178

    Article  PubMed  CAS  Google Scholar 

  • Krüger C, Hultberg A, Marcotte H, Hermans P, Bezemer S, Frenken LG, Hammarström L (2006) Therapeutic effect of llama derived VHH fragments against Streptococcus mutans on the development of dental caries. Appl Microbiol Biothecnol 72:732–737

    Article  CAS  Google Scholar 

  • Ladenson RC, Crimmins DL, Landt Y, Ladenson JH (2006) Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 78:4501–4508

    Article  PubMed  CAS  Google Scholar 

  • Lakowski RA, Luscombe NM, Swindells MB, Thornton JM (1996) Protein clefts in molecular recognition and function. Protein Sci 5:2438–2452

    Google Scholar 

  • Lauwereys M, Ghahroudi MA, Desmyter A, Kinne J, Hölzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17:3512–3520

    Article  PubMed  CAS  Google Scholar 

  • Ledeboer AM, Bezemer S, de Haard JJW, Schaffers IM, Verrips CT, van Vliet C, Düsterhöft E-M, Zoon P, Moineau S, Frenken LGJ (2002) Preventing phage lysis of Lactococcus lactis in cheese production using a neutralizing heavy-chain antibody fragment from llama. J Dairy Sci 85:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Loris R, Marianovsky I, Lah J, Laeremans T, Engelberg-Kulka H, Glaser G, Muyldermans S, Wyns L (2003) Crystal structure of the intrinsically flexible addiction antidote MazE. J Biol Chem 278:28252–28257

    Article  PubMed  CAS  Google Scholar 

  • Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 324:13–25

    Article  PubMed  CAS  Google Scholar 

  • Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA (2004) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13:325–337

    Article  PubMed  CAS  Google Scholar 

  • Magee AM, MacLean D, Gray JC, Kavanagh TA (2007) Disruption of essential plastid gene expression caused by T7 RNA polymerase-mediated transcription of plastid transgenes during early seedling development. Transgenic Res 16:415–428

    Article  PubMed  CAS  Google Scholar 

  • Marquardt A, Muyldermans S, Przybylski M (2006) A synthetic camel anti-lysozyme peptide antibody (peptibody) with flexible loop structure identified by high-resolution affinity mass spectrometry. Chem Eur J 12:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Volpari C, Steinkuhler C, Dimasi N, Brunetti M, Biasiol G, Altamura S, Cortese R, De Francesco R, Sollazzo M (1997) Affinity selection of a camelized VH domain antibody inhibitor of hepatitis C virus NS3 protease. Protein Eng 10: 607–614

    Article  PubMed  CAS  Google Scholar 

  • McManus S, Riechmann L (1991) Use of 2D NMR, protein engineering, and molecular modeling to study the hapten-binding site of an antibody Fv fragment against 2-phenyloxazolone. Biochemistry 30:5851–5857

    Article  PubMed  CAS  Google Scholar 

  • Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P, Theys J (2007) Potential and limitations of bacterial-mediated cancer therapy. Front Biosci 12:3880–3891

    Article  PubMed  CAS  Google Scholar 

  • Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, Whitlow M, Snoy P, Schlom J (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res 51:6363–6371

    PubMed  CAS  Google Scholar 

  • Muyldermans S (2001) Single domain camel antibodies: current status. Rev Mol Biotechnol 74:277–302

    Article  CAS  Google Scholar 

  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VK, Muyldermans S, Hamers R (1998) The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J Mol Biol 257:413–418

    Article  Google Scholar 

  • Nguyen VK, Hamers R, Wyns L, Muyldermans S (1999) Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IgG2A heavy-chain antibodies. Mol Immunol 36:515–524

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–931

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in camelidae. Adv Immunol 79:261–296

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VK, Su C, Muyldermans S, van der Loo W (2002) Heavy-chain antibodies in camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47

    Article  PubMed  CAS  Google Scholar 

  • Nieba L, Honegger A, Krebber C, Plückthun A (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng 10:435–444

    Article  PubMed  CAS  Google Scholar 

  • Nugent LJ, Jain RK (1984) Extravascular diffusion in normal and neoplastic tissues. Cancer Res 44:238–244

    PubMed  CAS  Google Scholar 

  • Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 38:313–326

    Article  PubMed  CAS  Google Scholar 

  • Olichon A, Schweizer D, Muyldermans S, de Marco A (2007) Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnol 7:7

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1996) X-ray crystallography of antibodies. Adv Protein Chem 49:57–133

    Article  PubMed  CAS  Google Scholar 

  • Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarström Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L et al (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194:1580–1588

    Article  PubMed  Google Scholar 

  • Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumor-targeting vectors. Lancet Oncol 4:548–556

    Article  PubMed  Google Scholar 

  • Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LGJ (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:74–83

    Article  PubMed  CAS  Google Scholar 

  • Pleschberger M, Saerens D, Weigert S, Sleytr UB, Muyldermans S, Sára M, Egelseer EM (2004) An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconjug Chem 15:664–671

    Article  PubMed  CAS  Google Scholar 

  • Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA et al (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors. Proc Natl Acad Sci U S A 98:4628–4633

    Article  PubMed  CAS  Google Scholar 

  • Porter RR (1973) Structural studies of immunoglobulins. Science 180:713–716

    Article  PubMed  CAS  Google Scholar 

  • Potter KN, Li Y, Capra JD (1996) Staphylococcal protein A simultaneously interacts with framework region 1, complementarity determining region 2 and framework region 3 on human VH3-encoded Igs. J Immunol 157:2982–2988

    PubMed  CAS  Google Scholar 

  • Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M, Allameh AA (2005) High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr Purif 44:32–38

    Article  PubMed  CAS  Google Scholar 

  • Rajabi-Memari H, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Esmaili A (2006) Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma (Larchmt) 25:209–215

    Article  CAS  Google Scholar 

  • Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245

    Article  PubMed  CAS  Google Scholar 

  • Reiter Y, Schuck P, Boyd LF, Plaksin D (1999) An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface. J Mol Biol 290:685–698

    Article  PubMed  CAS  Google Scholar 

  • Riechmann L, Cavanagh J, McManus S (1991) Uniform labeling of a recombinant antibody Fv-fragment with 15N and 13C for heteronuclear NMR spectroscopy. FEBS Lett 287:185–188

    Article  PubMed  CAS  Google Scholar 

  • Roholt O, Onoue K, Pressman D (1964) Specific combination of H and L chains of rabbit γ-globulins. Proc Natl Acad Sci U S A 51:173–178

    Article  PubMed  CAS  Google Scholar 

  • Roovers RC, Laeremans T, Huang L, de Taeye S, Verkleij AJ, Revets H, de Haard HJ, van Bergen en Henegouwen PMP (2007) Efficient inhibition of EGFR signaling and of tumor growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 56:303–317

    Article  PubMed  CAS  Google Scholar 

  • Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backman N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  PubMed  CAS  Google Scholar 

  • Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279:51965–51972

    Article  PubMed  CAS  Google Scholar 

  • Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, Brys L, Huang L, Bosmans E, Maes G, Borghs G, Muyldermans S (2005) Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem 77:7547–7555

    Article  PubMed  CAS  Google Scholar 

  • Sasso EH, Silverman GJ, Mannik M (1991) Human IgA and IgG F(ab′)2 that bind to staphylococcal protein A belong to the VHIII subgroup. J Immunol 147:1877–1883

    PubMed  CAS  Google Scholar 

  • Seligmann M, Mihaesco E, Preud’homme JL, Danon F, Brouet JC (1979) Heavy chain diseases: current findings and concepts. Immunol Rev 48:145–167

    Article  PubMed  CAS  Google Scholar 

  • Skerra A, Plückthun A (1988) Assembly of functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041

    Article  PubMed  CAS  Google Scholar 

  • Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, Anguille C, Cambillau C, Tegoni M (1996) The crystal structure of a llama heavy chain variable domain. Nat Struct Biol 3:752–757

    Article  PubMed  CAS  Google Scholar 

  • Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, Cambillau C (2000) Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Stewart CS, MacKenzie CR, Hall JC (2007) Isolation, characterization and pentamerization of α-cobrotoxin specific single-domain antibodies from a naïve phage display library: preliminary findings for antivenom development. Toxicon 49:699–709

    Article  PubMed  CAS  Google Scholar 

  • Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. J Biol Chem 279:1256–1261

    Article  PubMed  CAS  Google Scholar 

  • Szynol A, de Soet JJ, Sieben-van Tuyl E, Bos JW, Frenken LG (2004) Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Antimicrob Agents Chemother 48:3390–3395

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Lobato MN, Rabbitts TH (2003) Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol 331:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Tanha J, Xu P, Chen Z, Ni F, Kaplan H, Narang SA, MacKenzie CR (2001) Optimal design features of camelized human single-domain antibody libraries. J Biol Chem 276:24774–24780

    Article  PubMed  CAS  Google Scholar 

  • Transue TR, De Genst E, Ghahroudi MA, Wyns L, Muyldermans S (1998) Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins Struct Funct Genet 32:515–522

    Article  PubMed  CAS  Google Scholar 

  • Tunggal JK, Cowan DS, Shaikh H, Tannock IF (1999) Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res 5:1583–1586

    PubMed  CAS  Google Scholar 

  • Utsumi S, Karush F (1964) The subunits of purified rabbit antibody. Biochemistry 3:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Van der Linden RHJ, Frenken L, de Gues B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips T (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46

    Article  PubMed  Google Scholar 

  • Van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, Frenken L (2000a) Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods 240:185–195

    Article  PubMed  Google Scholar 

  • Van der Linden R, de Geus B, Frenken L, Peters H, Verrips T (2000b) Improved production and function of llama heavy chain antibody fragments by molecular evolution. J Biotechnol 80:261–270

    Article  PubMed  Google Scholar 

  • Van der Vaart JM, Pant N, Wolvers D, Bezemer S, Hermans PW, Bellamy K, Sarker SA, van der Logt CPE, Svensson L, Verrips CT et al (2006) Reduction in morbidity of rotavirus induced diarrhea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine 24:4130–4137

    Article  PubMed  CAS  Google Scholar 

  • Veiga E, de Lorenzo V, Fernández LA (2004) Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol Microbiol 52:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Verheesen P, de Kluijver A, van Koningsbruggen S, de Brij M, de Haard H, van Ommen CJB, van der Maarel SM, Verrips T (2006a) Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear poly(A)-binding protein with a single-domain intracellular antibody. Hum Mol Genet 15:105–111

    Article  PubMed  CAS  Google Scholar 

  • Verheesen P, Roussis A, de Haard HJ, Groot AJ, Stam JC, den Dunnen JT, Frants RR, Verkleij AJ, Verrips CT, van der Maarel SM (2006b) Reliable and controllable antibody fragment selections from camelid non-immune libraries for target validation. Biochim Biophys Acta 1764:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Vu KB, Ghahroudi MA, Wyns L, Muyldermans S (1997) Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol 34:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546

    Article  PubMed  CAS  Google Scholar 

  • Webster DM, Henry AH, Rees AR (1994) Antibody–antigen interactions. Curr Opin Struct Biol 4:123–129

    Article  CAS  Google Scholar 

  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  PubMed  CAS  Google Scholar 

  • Woolven BP, Frenken L, van der Logt P, Nicholls PJ (1999) The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50:98–101

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biothecnol 23:1137–1146

    Article  CAS  Google Scholar 

  • Wu TT, Johnson G, Kabat EA (1993) Length distribution of CDR H3 in antibodies. Proteins Struct Funct Genet 16:1–7

    Article  PubMed  CAS  Google Scholar 

  • Yau KY, Groves MA, Li S, Sheedy C, Lee H, Tanha J, MacKenzie CR, Jermutus L, Hall JC (2003) Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods 281:161–175

    Article  PubMed  CAS  Google Scholar 

  • Yau KY, Dubuc G, Li S, Hirama T, MacKenzie CR, Jermutus L, Hall JC, Tanha J (2005) Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods 297:213–224

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Saerens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Ghassabeh, G.H., Muyldermans, S., Saerens, D. (2010). Nanobodies, Single-Domain Antigen-Binding Fragments of Camelid Heavy-Chain Antibodies. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_3

Download citation

Publish with us

Policies and ethics