Skip to main content

Bimodal Liposomes and Paramagnetic QD-Micelles for Multimodality Molecular Imaging of Tumor Angiogenesis

  • Chapter
Nanoparticles in Biomedical Imaging

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 102))

  • 2594 Accesses

Abstract

Among many pathological processes, angiogenesis, the formation of new blood vessels from pre-existing blood vessels, has received much attention during the last few decades in the field of oncology, since it was postulated that tumor growth is angiogenesis dependent. Therefore, therapies that are aimed to inhibit angiogenesis are promising interventions for cancer. Imaging methods to evaluate angiogenesis are becoming increasingly important and especially the area of molecular imaging highly depends on suitable and specific contrast agents.

Nanotechnology offers the unique possibility to create nanoscale devices that can have multiple properties integrated.

In this chapter the synthesis and application of two types of nanoparticles with fluorescent and magnetic properties for multimodality imaging, i.e. magnetic resonance imaging (MRI) and optical techniques, will be discussed. The first part deals with a nanoparticle based on liposomes which was used to visualize and quantify tumor angiogenesis in vivo with MRI, after applying angiostatic therapy. The second part of this chapter focuses on a nanoparticle that is based on fluorescent quantum dots with a paramagnetic micellar coating. We demonstrate the applicability of this contrast agent for parallel intravital microscopy and MRI in vivo.

Both nanoparticles were shown to be very useful for molecular imaging of tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aime, S., Dastru, W., Crich, S.G., Gianolio, E., Mainero, V., 2002. Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes, Biopolymers 66,6, 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A.D., Standish, M.M.,Watkins, J.C., 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids J Mol Biol 13, 1, 238–252.

    Article  Google Scholar 

  • Dafni, H., Israely, T., Bhujwalla, Z.M., Benjamin, L.E., Neeman, M., 2002. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin, Cancer Res 62, 22, 6731–6739.

    Google Scholar 

  • Darbandi, M., Thomann, R., Nann, T., 2005. Single quantum dots in silica spheres by microemulsion synthesis, Chemistry of Materials 17, 23, 5720–5725.

    Article  CAS  Google Scholar 

  • de Lussanet, Q.G., Langereis, S., Beets-Tan, R.G., van Genderen, M.H., Griffioen, A.W., van Engelshoven, J.M., and Backes, W.H., 2005. Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice, Radiology 235, 1, 65–72.

    Google Scholar 

  • Donega, C.D., Liljeroth, P., Vanmaekelbergh, D., 2005. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals, Small, 1,12, 1152–1162.

    Article  CAS  Google Scholar 

  • Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A., 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298,5599, 1759–1762.

    Google Scholar 

  • Folkman, J., 1971. Tumor angiogenesis: therapeutic implications, N Engl J Med 285,21, 1182–1186.

    Google Scholar 

  • Folkman, J., 2003. Angiogenesis inhibitors: a new class of drugs, Cancer Biol Ther 2,4 Suppl 1, S127–S133.

    Google Scholar 

  • Giancotti, F.G., Ruoslahti, E., 1999. Integrin signaling, Science 285,5430, 1028–1032.

    Article  Google Scholar 

  • Griffioen, A.W., Molema, G., 2000. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation, Pharmacol Rev 52,2, 237–268.

    Google Scholar 

  • Haubner, R., Wester, H.J., Weber, W.A., Mang, C., Ziegler, S.I., Goodman, S.L., Senekowitsch-Schmidtke, R., Kessler, H., Schwaiger, M., 2001. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography, Cancer Res 61,5, 1781–1785.

    Google Scholar 

  • Hood, J.D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R.A., Xiang, R., Cheresh, D.A., 2002. Tumor regression by targeted gene delivery to the neovasculature, Science 296,5577, 2404–2407.

    Google Scholar 

  • Huber, M.M., Staubli, A.B., Kustedjo, K., Gray, M.H., Shih, J., Fraser, S.E., Jacobs, R.E., Meade, T.J., 1998. Fluorescently detectable magnetic resonance imaging agents, Bioconjug Chem 9,2, 242–249.

    Google Scholar 

  • Jain, R.K., Munn, L.L., Fukumura, D., 2002. Dissecting tumour pathophysiology using intravital microscopy, Nat Rev Cancer 2, 4, 266–276.

    Google Scholar 

  • Kracht, L.W., Friese, M., Herholz, K., Schroeder, R., Bauer, B., Jacobs, A., Heiss, W.D., 2003. Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma, Eur J Nucl Med Mol Imaging 30,6, 868–873.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., Weissleder, R., 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nat Biotechnol 18,4, 410–414.

    Google Scholar 

  • McDonald, D.M., Choyke, P.L., 2003. Imaging of angiogenesis: from microscope to clinic, Nat Med, 9, 6, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., 2005. Quantum dot bioconjugates for imaging, labelling and sensing, Nat Mater 4,6, 435–446.

    Article  CAS  Google Scholar 

  • Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307, 5709, 538–544.

    Article  CAS  Google Scholar 

  • Mulder, W.J., Koole, R., Brandwijk, R.J., Storm, G., Chin, P.T., Strijkers, G.J., de Mello, D.C., Nicolay, K., Griffioen, A.W., 2006a. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe, Nano Lett, 6, 1, 1–6.

    Article  CAS  Google Scholar 

  • Mulder, W.J., Strijkers, G.J., Griffioen, A.W., van Bloois, L., Molema, G., Storm, G., Koning, G.A., Nicolay, K., 2004. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets, Bioconjug Chem, 15, 4, 799–806.

    Google Scholar 

  • Mulder, W.J., Strijkers, G.J., Habets, J.W., Bleeker, E.J., van der Schaft, D.W., Storm, G., Koning, G.A., Griffioen, A.W., Nicolay, K., 2005. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, FASEB J, 19,14, 2008–2010.

    PubMed  CAS  Google Scholar 

  • Mulder, W.J., Strijkers, G.J., van Tilborg, G.A., Griffioen, A.W., Nicolay, K., 2006b. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging, NMR Biomed, 19,1, 142–164.

    Article  CAS  Google Scholar 

  • Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., Prasad, P.N., 2005. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery, Proc Natl Acad Sci U S A., 102,2, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C., 1998. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging, Nat Med, 4,5, 623–626.

    Google Scholar 

  • Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K., 2005. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo, Nat Med, 11,6, 678–682.

    Article  CAS  Google Scholar 

  • Torchilin, V.P., 2005. Recent advances with liposomes as pharmaceutical carriers, Nat Rev Drug Discov, 4,2, 145–160.

    Article  CAS  Google Scholar 

  • van Beijnum, J.R., Griffioen, A.W., 2005. In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles, Biochim Biophys Acta, 1755, 2, 121–134.

    PubMed  Google Scholar 

  • Weissleder, R., 2002. Scaling down imaging: molecular mapping of cancer in mice, Nat Rev Cancer, 2, 1, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Weissleder, R., Mahmood, U., 2001. Molecular imaging, Radiology, 219,2, 316–333.

    Google Scholar 

  • Winter, P.M., Caruthers, S.D., Kassner, A., Harris, T.D., Chinen, L.K., Allen, J.S., Lacy, E.K., Zhang, H., Robertson, J.D., Wickline, S.A., Lanza, G.M., 2003. Molecular imaging of angiogenesis in nascent Vx2 rabbit tumors using a novel alpha(nu)beta3targeted nanoparticle and 1.5 tesla magnetic resonance imaging, Cancer Res, 63,18, 5838–5843.

    Google Scholar 

  • Xie, R., Kolb, U., Li, J., Basche, T., Mews, A., 2005. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals, J Am Chem Soc, 127, 20, 7480–7488.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mulder, W.J. et al. (2008). Bimodal Liposomes and Paramagnetic QD-Micelles for Multimodality Molecular Imaging of Tumor Angiogenesis. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_23

Download citation

Publish with us

Policies and ethics