Skip to main content

Prodrug Approaches for Drug Delivery to the Brain

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

The microvasculature of the human brain consists of approximately 400 miles of capillaries with a surface area of about 100 square feet (Pardridge, 1991). Because the capillary network in the brain is so extensive, Pardridge has suggested that “nearly every neuron is virtually perfused by its own microvessel” (Pardridge, 2002). Yet, despite this extensive surface area and the fact that the blood-brain barrier (BBB) is comprised of a cell monolayer having a thickness of only 200–300 nm, the impermeability of this barrier is widely acknowledged, and methods to circumvent it have been the subject of many reviews (Rapoport, 1976; Rapoport et al., 1979; Fenstermacher and Rapoport, 1984; Neuwelt, 1989; Pardridge, 1991, 1993, 2001; Bradbury, 1992; Drewes and Betz, 1993; Anderson, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small Je, Herrlinger U, Ourednik V, P. M. Black, Breakefield XO and Snyder EY. Neural Stem Cells Display Extensive Tropism for Pathology in Adult Brain: Evidence from Intracranial Gliomas. Proc Natl Acad Sci USA 2000; 97:12846–12851

    PubMed  CAS  Google Scholar 

  • Aggarwal SK, Gogu SR, Rangan SRS and Agrawal KC. Synthesis and Biological Evaluation of Prodrugs of Zidovudine. J Med Chem 1990; 33:1505–1510

    PubMed  CAS  Google Scholar 

  • Aghi M, Kramm CM, Chou TC, Breakefield XO and Chiocca EA. Synergistic Anticancer Effects of Ganciclovir/Thymidine Kinase and 5-Fluorocytosine/Cytosine Deaminase Gene Therapies. J Natl Cancer Inst 1998; 90:370–380

    PubMed  CAS  Google Scholar 

  • Al-Khalidi UAS and Chaglassian TH. The Species Distribution of Xanthine Oxidase. Biochem J 1965; 97:318–320

    PubMed  CAS  Google Scholar 

  • Altomare C, Carotti A, Cellamare S, Ferappi M, Cagiano R and Renna G. QSAR Analysis of Chemical and Serum-Catalyzed Hydrolysis of Phenyl Ester Prodrugs of Nipecotic Acid. Int J Pharm 1988; 48:91–102

    CAS  Google Scholar 

  • Anderson BD. Prodrugs for Improved CNS Delivery. Adv Drug Deliv Rev 1996; 19:171–202

    CAS  Google Scholar 

  • Anderson WR, Simpkins JW, Brewster ME and Bodor N. Evidence of the Reestablishment of Copulatory Behavior in Castrated Male Rats with a Brain-Enhanced Estradiol-Chemical Delivery System. Pharmacol Biochem Behav 1986; 27:265–271

    Google Scholar 

  • Anderson BD, Wygant MB, Xiang T-X, Waugh WA and Stella V. Preformulation Solubility and Kinetic Studies of 2′,3′-Dideoxypurine Nucleosides: Potential Anti-AIDS Agents. Int J Pharm 1988; 45:27–37

    CAS  Google Scholar 

  • Anderson BD, Hoesterey BL, Baker DC and Galinsky RE. Kinetics of DDI in Plasma, Brain, and CSF of Rats after Administration of DDI and an Ester Prodrug of DDI. Ann NY Acad Sci 1990a; 616:472–474

    Google Scholar 

  • Anderson BD, Hoesterey BL, Baker DC and Galinsky RE. Uptake Kinetics of 2′,3′-Dideoxyinosine into Brain and Cerebrospinal Fluid of Rats: Intravenous Infusion Studies. J Pharmacol Exp Ther 1990b; 253:113–118

    PubMed  CAS  Google Scholar 

  • Anderson BD, Galinsky RE, Baker DC, Chi S-C, Hoesterey BL, Morgan ME, Murakami K and Mitsuya H. Approaches Toward the Optimization of CNS Uptake of Anti-AIDS Agents. J Control Release 1992; 19:219–230

    CAS  Google Scholar 

  • Anderson BD, Morgan ME and Singhal D. Enhanced Oral Bioavailability of DDI after Administration of 6-CI-DDP, an Adenosine Deaminase-Activated Prodrug, to Chronically Catheterized Rats. Pharm Res 1995; 12:1126–1133

    PubMed  CAS  Google Scholar 

  • Apiwattanakul N, Sekine T, Chairoungdue A, Kanai Y, Nakajima N, Sophasan S and Endou H. Apiwattanakul N, Sekine T, Chairoungdue A, Kanai Y, Nakajima N, Sophasan S and Endou H. Transport Properties of Nonsteroidal Anti-Inflammatory Drugs by Organic Anion Transporter 1 Expressed in Xenopus Laevis Oocytes Mol Pharmacol 1999; 55:847–854

    PubMed  CAS  Google Scholar 

  • Badir K, Haj-Yehia A, Vree TB, van der Kleijn E and Bialer M. Pharmacokinetics and Anticonvulsant Activity of Three Monoesteric Prodrugs of Valproic acid. Pharm Res 1991; 8:750–753

    PubMed  CAS  Google Scholar 

  • Bak A, Gudmundsson OS, Friis GJ, Siahaan TJ and Borchardt RT. Acyloxy-Alkoxy-Based Cyclic Prodrugs of Opioid Peptides: Evaluation of the Chemical and Enzymatic Stability as well as Their Transport Properties Across Caco-2 Cell Monolayers. Pharm Res 1999; 16:24–29

    PubMed  CAS  Google Scholar 

  • Balis FM, Pizzo PA, Butler KM, Hawkins ME, Brouwers P, Husson RN, Jacobsen F, Blaney SM, Gress J, Jarosinski P and Poplack DG. Clinical Pharmacology of 2′,3′-Dideoxyinosine in Human Immunodeficiency Virus-Infected Children. J Infect Dis 1992; 165:99–104

    PubMed  CAS  Google Scholar 

  • Balzarini J, Cooney DA, Dalal M, Kang G-J, Cupp JE, De Clercq E, Broder S and Johns DG. 2′,3′-Dideoxycytidine: Regulation of its Metabolism and Anti-Retroviral Potency by Natural Pyrimidine Nucleosides and by Inhibitors of Pyrimidine Nucleotide Synthesis. Mol Pharmacol 1987; 32:789–806

    Google Scholar 

  • Balzarini J, Herdewijn P and De Clercq E. Differential Patterns of Intracellular Metabolism of 2′,3′-Didehydro-2′,3′-Dideoxythymidine and 3′-Azido-2′,3′-Dideoxythymidine, Two Potent Anti-Human Immunodeficiency Virus Compounds. J Biol Chem 1989; 264:6127–6133

    PubMed  CAS  Google Scholar 

  • Barchi JJ, Jr., Marquez VE, Driscoll JS, Ford H, Jr., Mitsuya H, Shirasaka T, Aoki S and Kelley JA. Potential Anti-AIDS Drugs. Lipophilic, Adenosine Deaminase-Activated Prodrugs. J Med Chem 1991; 34:1647–1655

    PubMed  CAS  Google Scholar 

  • Barnard EA, Borsodi A, Goodman M, Hill R, Hunter JC, Moroder L, Pasternak GW, Portoghese PS, Przewlocki R and Roques BP. What is the Molecular Basis of Opioid Antinociception and How Does this Information Point to New Drug Design? In: Basbaum A, and Besson JM. Towards a New Pharmacotherapy of Pain. New York, John Wiley & Sons Ltd.; 1991:299–315

    Google Scholar 

  • Bassiri RM and Utiger R. Metabolism and Excretion of Exogenous Thyrotropin-Releasing Hormone in Humans. J Clin Invest 1973; 52:1616–1619

    PubMed  CAS  Google Scholar 

  • Battaglia G, La Russa M, Bruno V, Arenare L, Ippolito R, Copani A, Bonina F and Nicoletti F. Systemically Administered D-Glucose Conjugates of 7-Chlorokynurenic Acid are Centrally Available and Exert Anticonvulsant Activity in Rodents. Brain Res 2000; 860:149–156

    PubMed  CAS  Google Scholar 

  • Beaulieu E, Demeule M, Averill-Bates DA and Beliveau R. The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier. In: Couraud P-O, and Scherman D. Biology and Physiology of the Blood-Brain Barrier. New York, Plenum Press; 1996:171–174

    Google Scholar 

  • Beaulieu E, Demeule M, Ghitescu L and Beliveau R. P-Glycoprotein is Strongly Expressed in the Luminal Membranes of the Endothelium of Blood Vessels in the Brain. Biochem J 1997; 326:539–544

    PubMed  CAS  Google Scholar 

  • Bertler A, Falck B, Owman C and Rosengren E. Localization of Monoaminergic Blood-Brain Barrier Mechanisms. Pharmacol Rev 1966; 18:369–385

    PubMed  CAS  Google Scholar 

  • Betz AL. Identification of Hypoxanthine Transport and Xanthine Oxidase Activity in Brain Capillaries. J Neurochem 1985; 44:574–579

    PubMed  CAS  Google Scholar 

  • Betz AL and Goldstein GW. Developmental Changes in Metabolism and Transport Properties of Capillaries Isolated from Rat Brain. J Physiol 1981; 312:365–376

    PubMed  CAS  Google Scholar 

  • Betz AL, Firth JA and Goldstein GW. Polarity of the Blood-Brain Barrier: Distribution of Enzymes Between the Luminal and Antiluminal Membranes of Brain Capillary Endothelial Cells. Brain Res 1980; 192:17–28

    PubMed  CAS  Google Scholar 

  • Bickel U and Kang Y-S. Use of Chimeric Peptides in Drug Delivery to the Brain. In: Paulson O, Knudsen GM, and Moos T. Brain Barrier Systems. Alfred Benzon Symposium 45, Copenhagen, Munksgaard; 1999; 478–488

    Google Scholar 

  • Bickel U, Yoshikawa T, Landaw EM, Faull KF and Pardridge WM. Pharmacological Effects In Vivo in Brain by Vector-Mediated Delivery of Peptides. Proc Natl Acad Sci USA 1993; 90:2618–2622

    PubMed  CAS  Google Scholar 

  • Bickel U, Kang Y-S and Pardridge WM. In Vivo Cleavability of a Disulfide-Based Chimeric Opioid Peptide in Rat Brain. Bioconjug Chem 1995; 6:211–218

    PubMed  CAS  Google Scholar 

  • Bickel U, Yoshikawa T and Pardridge WM. Delivery of Peptides and Proteins through the Blood-Brain Barrier. Adv Drug Del Rev 2001; 46:247–279

    CAS  Google Scholar 

  • Blanquicett C, Gillespie GY, Nabors LB, Miller CR, Bharara S, Buchsbaum DJ, Diasio RB and Johnson MR. Induction of Thymidine Phosphorylase in Both Irradiated and Shielded, Contralateral Human U87MG Glioma Xenografts: Implications for a Dual Modality Treatment Using Capecitabine and Irradiation. Mol Cancer Ther 2002; 1:1139–1145

    PubMed  CAS  Google Scholar 

  • Block E and Bennett J. Pharmacological Studies with 5-Fluorocytosine. Med Radiol (Mosk) 1974; 19:476–482

    CAS  Google Scholar 

  • Boado RJ, Li JY, Nagaya M, Zhang C and Pardridge WM. Selective Expression of the Large Neutral Amino Acid Transporter at the Blood-Brain Barrier. Proc Natl Acad Sci USA 1999; 96:12079–12084

    PubMed  CAS  Google Scholar 

  • Boddy A, Aarons L and Petrak K. Efficiency of Drug Targeting: Steady-State Considerations Using a Three-Compartment Model. Pharm Res 1989; 6:367–372

    PubMed  CAS  Google Scholar 

  • Bodor N. Drug Targeting and Retrometabolic Drug Design Approaches. Adv Drug Del Rev 1994; 14:157–166

    CAS  Google Scholar 

  • Bodor N. Retrometabolic Approaches to Drug Targeting. NIDA Res Monogr Series 1995; 154:1–26

    CAS  Google Scholar 

  • Bodor N and Brewster M. Problems of Delivery of Drugs to the Brain. Pharmacol Ther 1983; 19:337–386

    CAS  Google Scholar 

  • Bodor N and Prokai L. Molecular Packaging. Peptide Delivery to the Central Nervous System by Sequential Metabolism. In: Taylor MD, and Amidon GL. Peptide-Based Drug Design: Controlling Transport and Metabolism, American Chemical Society; 1995; 317–337

    Google Scholar 

  • Bodor N and Buchwald P. Recent Advances in the Brain Targeting of Neuropharmaceuticals by Chemical Delivery Systems. Adv Drug Del Rev 1999; 36:229–254

    CAS  Google Scholar 

  • Bodor N, Prokai L, Wu W-M, Farag H, Jonalagadda S, Kawamura M and Simpkins J. A Strategy for Delivering Peptides into the Central Nervous System by Sequential Metabolism. Science 1992; 257:1698–1700

    PubMed  CAS  Google Scholar 

  • Bonina FP, Arenare L, Ippolito R, Boatto G, Battaglia G, Bruno V and De Caprariis P. Synthesis, Pharmacokinetics and Anticonvulsant Activity of 7-Chlorokynurenic Acid Prodrugs. Int J Pharm 2000; 202:79–88

    PubMed  CAS  Google Scholar 

  • Bonina F, Puglia C, Rimoli MG, Melisi D, Boatto G, Nieddu M, Calignano A, Rana GL and De Caprariis P. Glycosyl Derivatives of Dopamine and L-Dopa as Anti-Parkinson Prodrugs: Synthesis, Pharmacological Activity and In Vitro Stability Studies. J Drug Target 2003; 11:25–36

    PubMed  CAS  Google Scholar 

  • Bourke RS, West CR, Chheda G and Tower DB. Kinetics of Entry and Distribution of 5-Fluorouracil in Cerebrospinal Fluid and Brain following Intravenous Injection in a Primate. Cancer Res 1973; 33:1735–1746

    PubMed  CAS  Google Scholar 

  • Bower M, Newlands ES, Bleehen NM, Brada M, Begent RJ, Calvert H, Colquhoun I, Lewis P and Brampton MH. Multicentre CRC Phase II Trial of Temozolomide in Recurrent or Progressive High-Grade Glioma. Cancer Chemother Pharmacol 1997; 40:484–488

    PubMed  CAS  Google Scholar 

  • Bradbury MWB. Physiology and Pharmacology of the Blood-Brain Barrier. Berlin: Springer-Verlag; 1992. 549 p

    Google Scholar 

  • Bradbury A, Finnie M and Smith D. Mechanism of C-Terminal Amide Formation of Pituitary Enzyme. Nature 1982; 298:686–688

    PubMed  CAS  Google Scholar 

  • Brady TG and O’Donovan CI. A Study of the Tissue Distribution of Adenosine Deaminase in Six Mammal Species. Comp Biochem Physiol 1965; 14:101–120

    PubMed  CAS  Google Scholar 

  • Bray RC. Molybdenum Iron-Sulfur Flavin Hydrolases and Related Enzymes. In: Boyer PO, Lardy H, and Myrback K. The Enzymes. New York, Academic Press; 1975:533–556

    Google Scholar 

  • Brecher P, Tercyak A, Gavras H and Chobanian AV. Peptidyl Dipeptidase in Rabbit Brain Microvessels. Biochim Biophys Acta 1978; 526:537–546

    PubMed  CAS  Google Scholar 

  • Brewster ME and Bodor N. Redox Approaches to Drug Delivery to the Central Nervous System. NIDA Monogr Series 1992; 120:169–201

    CAS  Google Scholar 

  • Brewster ME, Anderson W and Bodor N. Brain, Blood, and Cerebrospinal Fluid Distribution of a Zidovudine Chemical Delivery System in Rabbits. J Pharm Sci 1991; 80:843–846

    PubMed  CAS  Google Scholar 

  • Brewster ME, Pop E, Braunstein AJ, Pop AC, Druzgala P, Dinculescu A, Anderson W, Elkoussi A and Bodor N. The Effect of Dihydronicotinate N-Substitution on the Brain-Targeting Efficacy of a Zidovudine Chemical Delivery System. Pharm Res 1993; 10:1356–1362

    PubMed  CAS  Google Scholar 

  • Brewster ME, Raghavan K, Pop E and Bodor N. Enhanced Delivery of Ganciclovir to the Brain through the Use of Redox Targeting. Antimicrob Agents Chemother 1994; 38:817–823

    PubMed  CAS  Google Scholar 

  • Brewster ME, Anderson WR, Helton DO, Bodor N and Pop E. Dose-Dependent Brain Delivery of Zidovudine through the Use of a Zidovudine Chemical Delivery System. Pharm Res 1995; 12:796–798

    PubMed  CAS  Google Scholar 

  • Brewster ME, Anderson WR, Webb AI, Pablo LM, Meinsma D, Moreno D, Derendorf H, Bodor N and Pop E. Evaluation of a Brain-Targeting Zidovudine Chemical Delivery System in Dogs. Antimicrob Agents Chemother 1997; 41:122–128

    PubMed  CAS  Google Scholar 

  • Brightman MW. Morphology of Blood-Brain Interfaces. Exp Eye Res 1977; 25(Suppl.): 1–25

    PubMed  Google Scholar 

  • Brightman MW and Reese TS. Junctions between Intimately Apposed Cell Membranes in the Vertebrate Brain. J Cell Biol 1969; 40:648–677

    PubMed  CAS  Google Scholar 

  • Brightman MW and Tao-Cheng JH. Tight Junctions of Brain Endothelium and Epithelium. In: Pardridge WM. The Blood-Brain Barrier: Cellular and Molecular Biology. New York, Raven Press; 1993:107–125

    Google Scholar 

  • Brouwers P (1991). Treatment-Related Changes in Pediatric Cognitive Function. Workshop on Neuro-AIDS: Drug Discovery and Development, Portland, Maine

    Google Scholar 

  • Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, Black PM, Breakefield XO and Aboody KS. Intravascular Delivery of Neural Stem Cell Lines to Target Intracranial and Extracranial Tumors of Neural and Non-Neural Origin. Hum Gene Ther 2003; 14:1777–1785

    PubMed  CAS  Google Scholar 

  • Brownlees J and Williams CH. Peptidase, Peptides, and the Mammalian Blood-Brain Barrier. J Neurochem 1993; 60:793–803

    PubMed  CAS  Google Scholar 

  • Buchwald P and Bodor N. Quantitative Structure-Metabolism Relationships: Steric and Nonsteric Effects in the Enzymatic Hydrolysis of Noncongener Carboxylic Esters. J Med Chem 1999; 42:5160–5168

    PubMed  CAS  Google Scholar 

  • Bundgaard H. The Double Prodrug Concept and its Applications. Adv Drug Deliv Rev 1989; 3:39–66

    CAS  Google Scholar 

  • Burns CL, Clair MHS, Frick LW, Spector T, Averett DR, English ML, Holmes TJ, Krenitsky TA and Koszalka GW. Novel 6-Alkoxypurine 2’,3’-Dideoxynucleosides as Inhibitors of the Cytopathic Effect of the Human Immunodeficiency Virus. J Med Chem 1993; 36:378–384

    PubMed  CAS  Google Scholar 

  • Busby J, W. H., Quackenbush GE, Humm J, Youngblood W and Kizer JS. An Enzyme(s) that Converts Glutaminyl-Peptides into Pyroglutamyl Peptides. Presence in Pituitary, Brain, Adrenal Medulla, and Lymphocytes. J Biol Chem 1982; 262:8532–8536

    Google Scholar 

  • Butler KM, Husson RN, Balis FM, Brouwers P, Eddy J, El-Amin D, Gress J, Hawkins M, Jarosinski P, Moss H, Poplack D, Santacroce S, Venzon D, Wiener L, Wolters P and Pizzo PA. Dideoxyinosine in Children with Symptomatic Human Immunodeficiency Virus Infection. N Engl J Med 1991; 324:137–144

    Article  PubMed  CAS  Google Scholar 

  • Carelli V, Liberatore F, Scipione L, Impicciatore M, Barocelli E, Cardellini M and Giorgioni G. New Systems for the Specific Delivery and Sustained Release of Dopamine to the Brain. J Control Release 1996; 42:209–216

    CAS  Google Scholar 

  • Ceresoli-Borroni G, Guidetti P and Schwarz R. Acute and Chronic Changes in Kynurenate Formation following an Intrastriatal Quinolinate Injection in Rats. J Neural Transm 1999; 106:229–242

    PubMed  CAS  Google Scholar 

  • Chassy BM and Suhadolnik RJ. Adenosine Aminohydrolase. Binding and Hydrolysis of 2-and 6-Substituted Purine Ribonucleosides and 9-Substituted Adenine Nucleosides. J Biol Chem 1967; 242:3655–3658

    PubMed  CAS  Google Scholar 

  • Chen H, Noble F, Roques BP and Fournié-Zaluski M-C. Long Lasting Antinociceptive Properties of Enkephalin Degrading Enzyme (NEP and APN) Inhibitor Prodrugs. J Med Chem 2001; 44:3523–3530

    PubMed  CAS  Google Scholar 

  • Chen W, Yang JZ, Andersen R, Nielsen LH and Borchardt RT. Evaluation of the Permeation Characteristics of a Model Peptide Opioid Peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its Cyclic Prodrugs across the Blood-Brain Barrier Using an In Situ Perfused Rat Brain Model. J Pharmacol Exp Ther 2002; 303:849–857

    PubMed  CAS  Google Scholar 

  • Chen P, Bodor N, Wu W-M and Prokai L. Strategies to Target Kyotorphin Analogues to the Brain. J Med Chem 1998; 41:3773–3781

    PubMed  CAS  Google Scholar 

  • Chipkin RE. Inhibitors of Enkephalinase: The Next Generation of Analgesics. Drugs Future 1986; 11:593–607

    Google Scholar 

  • Chu CK, Bhadti VS, Doshi KJ, Etse JT, Gallo JM, Boudinot FD and Schinazi RF. Brain Targeting of Anti-HIV Nucleosides: Synthesis and In Vitro and In Vivo Studies of Dihydropyridine Derivatives of 3′-Azido-2′,3′-Dideoxyuridine and 3′-Azido-3′-Deoxythymidine. J Med Chem 1990a; 33:2188–2192

    PubMed  CAS  Google Scholar 

  • Chu CK, Ullas GV, Jeong LS, Ahn SK, Doboszewski B, Lin ZX, Beach JW and Schinazi RF. Synthesis and Structure-Activity Relationships of 6-Substituted 2′,3′-Dideoxypurine Nucleosides as Potential Anti-Human Immunodeficiency Virus Agents. J Med Chem 1990b; 33:1553–1561

    PubMed  CAS  Google Scholar 

  • Cook CS, Karabatsos PJ, Schoenhard GL and Karim A. Species Dependent Esterase Activities for Hydrolysis of an Anti-HIV Prodrug Glycovir and Bioavailability of Active SC-48334. Pharm Res 1995; 12:1158–1164

    PubMed  CAS  Google Scholar 

  • Cooper AJL. The Role of Glutamine Transaminase K (GTK) in Sulfur and α-Keto Acid Metabolism in the Brain, and in the Possible Bioactivation of Neurotoxicants. Neurochem Int 2004; 44:557–577

    PubMed  CAS  Google Scholar 

  • Cooper DR, Marrel C, Van de Waterbeemd H, Testa B, Jenner P and Marsden CD. L-Dopa Esters as Potential Prodrugs: Behavioral Activity in Experimental Models of Parkinson’s Disease. J Pharm Pharmacol 1987a; 39:627–635

    PubMed  CAS  Google Scholar 

  • Cooper DR, Marrel C, Van de Waterbeemd H, Testa B, Jenner P and Marsden CD. L-Dopa Esters as Potential Prodrugs: Effect on Brain Concentration of Dopamine Metabolites in Reserpinized Mice. J Pharm Pharmacol 1987b; 39:809–818

    PubMed  CAS  Google Scholar 

  • Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR and Bertino JR. Multidrug-Resistance Gene (P-Glycoprotein) is Expressed by Endothelial Cells at Blood-Brain Barrier Sites. Proc Natl Acad Sci USA 1989; 86:695–698

    PubMed  CAS  Google Scholar 

  • Crider AM, Tita JD, Wood JD and Hinko CN. Esters of Nipecotic Acid and Iso-Nipecotic Acid as Potential Anticonvulsants. J Pharm Sci 1982; 71:1214–1219

    PubMed  CAS  Google Scholar 

  • Crider AM, Wood JD, Tschappat KD, Hinko CN and Seibert K. γ-Aminobutyric Acid Uptake Inhibition and Anticonvulsant Activity of Nipecotic Acid Esters. J Pharm Sci 1984; 73:1612–1616

    PubMed  CAS  Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH and Blaese RM. In Vivo Gene Transfer with Retroviral Vector-Producer Cells for Treatment of Experimental Brain Tumors. Science 1992; 256:1550–1552

    PubMed  CAS  Google Scholar 

  • Dallaire L, Tremblay L and Beliveau R. Purification and Characterization of Metabolically Active Capillaries of the Blood-Brain Barrier. Biochem J 1991; 276:745–752

    PubMed  Google Scholar 

  • de Varebeke PJ, Cavalier R, David-Ramacle M and Youdim MBH. Formation of the Neurotransmitter Glycine from the Anticonvulsant Milacemide is Mediated by Brain Monoamine Oxidase B. J Neurochem 1988; 50:1011–1016

    Google Scholar 

  • DeGraw RT and Anderson BD. Enhanced Oral Bioavailability of 2′-β-Fluoro-2′,3′-Dideoxyadenosine (F-ddA) through Local Inhibition of Intestinal Adenosine Deaminase. Pharm Res 2001; 18:1270–1276

    PubMed  CAS  Google Scholar 

  • Deguchi Y and Morimoto K. Application of an In Vivo Brain Microdialysis Technique to Studies of Drug Transport across the Blood-Brain Barrier. Current Drug Metab 2001; 2:411–423

    CAS  Google Scholar 

  • Deguchi Y, Inabe K, Tomiuasu K, Nozawa K, Yamada S and Kimura R. Study on Brain Interstitial Fluid Distribution and Blood-Brain Barrier Transport of Baclofen in Rats by Microdialysis. Pharm Res 1995; 12:1838–1844

    PubMed  CAS  Google Scholar 

  • Deguchi Y, Hayashi H, Fujii S, Naito T, Yokoyama Y, Yamada S and Kimura R. Improved Brain Delivery of a Nonsteroidal Anti-Inflammatory Drug with a Synthetic Glyceride Ester: A Preliminary Attempt at a CNS Drug Delivery System for the Therapy of Alzheimer’s Disease. J Drug Target 2000; 8:371–381

    PubMed  CAS  Google Scholar 

  • Denny BJ, Wheelhouse RT, Stevens MFG, Tsang LLH and Slack JA. NMR and Molecular Modeling Investigation of the Mechanism of Activation of the Antitumor Drug Temozolomide and Its Interaction with DNA. Biochemistry 1994; 33:9045–9051

    PubMed  CAS  Google Scholar 

  • DePierre JW and Morgenstern R. Comparison of the Distribution of Microsomal and Cytosolic Glutathione S-Transferase Activities in Different Organs of the Rat. Biochem Pharmacol 1983; 32:721–723

    PubMed  CAS  Google Scholar 

  • Dixon M and Webb E. Enzymes. New York, Academic; 1979. 1116 p

    Google Scholar 

  • Djuricic BM and Mrsulja BB. Enzymic Activity of the Brain: Microvessels vs. Total Forebrain Homogenate. Brain Res 1977; 138:561–564

    PubMed  CAS  Google Scholar 

  • Doheny MH, Shigeru N and Patsalos PN. A Microdialysis Study of Glycinamide, Glycine and Other Amino Acid Neurotransmitters in Rat Frontal Cortex and Hippocampus after the Administration of Milacemide, a Glycine Pro-Drug. Naunyn-Schmiedeberg’s Arch Pharmacol 1996; 354:157–163

    CAS  Google Scholar 

  • Dong Y, Wen P, Manome Y, Parr M, Hirshowitz A, Chen L, Hirshowitz EA, Crystal R, Weichselbaum R, Kufe DW and Fine HA. In Vivo Replication-Deficient Adenovirus Vector-Mediated Transduction of the Cytosine Deaminase Gene Sensitizes Glioma Cells to 5-Fluorocytosine. Hum Gene Ther 1996; 7:713–720

    PubMed  CAS  Google Scholar 

  • Drewes LR and Betz AL, Eds. Drewes LR and Betz AL, Eds. Frontiers in Cerebral Vascular Biology: Transport and Its Regulation Advances in Experimental Medicine and Biology New York, Plenum Press; 1993. 295 p

    Google Scholar 

  • Driscoll JS. AIDS: Adenosine Deaminase-Activated Prodrugs Designed for the Treatment of Human Immunodeficiency Virus in the Central Nervous System. In: Torrence PF. Biomedical Chemistry: Applying Chemical Principles to the Understanding and Treatment of Disease. New York: John Wiley & Sons, Inc.; 2000:99–114

    Google Scholar 

  • Driscoll JS, Siddiqui MA, Ford J, H., Kelley JA, Roth JS, Mitsuya H, Tanaka M and Marquez VE. Lipophilic, Acid-Stable, Adenosine Deaminase-Activated Anti-HIV Prodrugs for Central Nervous System Delivery. 3. 6-Amino Prodrugs of 2′-β-Fluoro-2′,3′-Dideoxyinosine. J Med Chem 1996; 39:1619–1625

    PubMed  CAS  Google Scholar 

  • Durrer A, Walther B, Racciatti A, Boss G and Testa B. Structure-Metabolism Relationships in the Hydrolysis of Nicotinate Esters by Rat Liver and Brain Subcellular Fractions. Pharm Res 1991; 8:832–839

    PubMed  CAS  Google Scholar 

  • Dykstra KH, Arya A, Arriola DM, Bungay PM, Morrison PF and Dedrick RL. Microdialysis Study of Zidovudine (AZT) Transport in Rat Brain. J Pharmacol Exp Ther 1993; 267:1227–1236

    PubMed  CAS  Google Scholar 

  • Eraly SA, Hamilton BA and Nigam SK. Organic Anion and Cation Transporters Occur in Pairs of Similar and Similarly Expressed Genes. Biochem Biophys Res Commun 2003; 300:333–342

    PubMed  CAS  Google Scholar 

  • Erb C, Seidel A, Frank H, Platt KL, Oesch F and Klein J. Formation of N-Methylnicotinamide in the Brain from a Dihydroyridine-Type Prodrug. Biochem Pharm 1999; 57:681–684

    PubMed  CAS  Google Scholar 

  • Estonius M, Forsberg L, Danielsson O, Weinander R, Kelner MJ and Morgenstern R. Distribution of Microsomal Glutathione Transferase 1 in Mammalian Tissues. A Predominant Alternate First Exon in Human Tissues. Eur J Biochem 1999; 260:409–413

    PubMed  CAS  Google Scholar 

  • Ezzeddine ZD, Martuza RL, Platika D, short MP, Malick A, Choi B and Breakefield XO. Selective Killing of Glioma Cells in Culture and In Vivo by Retrovirus Transfer of the Herpes Virus Thymidine Kinase Gene. Nature Biol 1991; 3:608–614

    CAS  Google Scholar 

  • Faden AI, Vink R and McIntosh TK. Thyrotropin-Releasing Hormone and Central Nervous System Trauma. Ann N Y Acad Sci 1989; 553:380–384

    PubMed  CAS  Google Scholar 

  • Farrell CL and Pardridge WM. Blood-Brain Barrier Glucose Transporter is Asymmetrically Distributed on Brain Capillary Endothelial Lumenal and Ablumenal Membranes: An Electron Microscopic Immunogold Study. Proc Natl Acad Sci 1991; 88:5779–5783

    PubMed  CAS  Google Scholar 

  • Feener EP, Shen W-C and Ryser HJP. Cleavage of Disulfide Bonds in Endocytosed Macromolecules. J Biol Chem 1990; 265:18780–18785

    PubMed  CAS  Google Scholar 

  • Fenstermacher JD and Rapoport SI. Blood-Brain Barrier. In: Renkin EM, and Michel CC. Handbook of Physiology Section 2: The Cardiovascular System Vol IV: Microcirculation. Washington, D.C., American Physiological Society; 1984:969–1000

    Google Scholar 

  • Fernandez C, Nieto O, Fontenla JA, Rivas E, de Ceballos ML and Fernandez-Mayoralas A. Synthesis of Glycosyl Derivatives as Dopamine Prodrugs: Interaction with Glucose Carrier GLUT-1. Org Biomol Chem 2003; 1:767–771

    PubMed  CAS  Google Scholar 

  • Finberg JPM and Youdim MBH. Monoamine Oxidases. In: Lajtha A. Handbook of Neurochemistry. New York, Plenum Press; 1983:293–313

    Google Scholar 

  • Fischer W and Spiess J. Identification of a Mammalian Glutaminyl Cyclase Converting Glutaminyl into Pyroglutaminyl Peptides. Proc Natl Acad Sci USA 1987; 84:3628–3632

    PubMed  CAS  Google Scholar 

  • Flaherty P, Castagnoli K, Wang Y-X and Castagnoli J, N. Synthesis and Selective Monoamine Oxidase-B-Inhibiting Properties of 1-Methyl-1,2,3,6-Tetrahydropyrid-4-yl Carbamate Derivatives: Potential Prodrugs of (R)-and (S)-Nordeprenyl. J Med Chem 1996; 39:4756–4761

    PubMed  CAS  Google Scholar 

  • Ford H, Jr., Siddiqui MA, Driscoll JS, Marquez VE, Kelley JA, Mitsuya H and Shirasaka T. Lipophilic, Acid-Stable, Adenosine Deaminase-Activated Anti-HIV Prodrugs for Central Nervous System Delivery. 2. 6-Halo and 6-Alkoxy Prodrugs of 2′-β-Fluoro-2′,3′-Dideoxyinosine. J Med Chem 1995; 38:1189–1195

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski M-C, Coric P, Turcaud S, Bruetschy L, Lucas E, Noble F and Roques BP. Potent and Systemically Active Aminopeptidase N Inhibitors Designed from Active-Site Investigation. J Med Chem 1992a; 35:1259–1266

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski M-C, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R and Roques BP. “Mixed Inhibitor-Prodrug” as a New Approach toward Systemically Active Inhibitors of Enkephalin-Degrading Enzymes. J Med Chem 1992b; 35:2473–2481

    PubMed  CAS  Google Scholar 

  • Frey HH, Popp C and Loscher W. Influence of Inhibitors of the High Affinity GABA Uptake on Seizure Thresholds in Mice. Neuropharmacol 1979; 18:581–590

    CAS  Google Scholar 

  • Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B and Starzyk RM. Anti-Transferrin Receptor Antibody and Antibody-Drug Conjugate across the Blood-Brain Barrier. Proc Natl Acad Sci USA 1991; 88:4771–4775

    PubMed  CAS  Google Scholar 

  • Furman PA, Fyfe JA, Clair MHS, Weinhold K, Rideout JL, Freeman GA, Nusinoff Lehrman S, Bolognesi DP, Broder S, Mitsuya H and Barry DW. Phosphorylation of 3′-Azido-3′-Deoyxthymidine and Selective Interaction of the 5′-Triphosphate with Human Immunodeficiency Virus Reverse Transcriptase. Proc Natl Acad Sci USA 1986; 83:8333–8337

    PubMed  CAS  Google Scholar 

  • Galinsky RE, Hoesterey BL and Anderson BD. Brain and Cerebrospinal Fluid Uptake of Zidovudine (AZT) in Rats after Intravenous Injection. Life Sci 1990; 47:781–788

    PubMed  CAS  Google Scholar 

  • Galinsky RE, Flaharty KK, Hoesterey BL and Anderson BD. Probenecid Enhances Central Nervous System Uptake of 2′,3′-Dideoxyinosine by Inhibiting Cerebrospinal Fluid Efflux. J Pharmacol Exp Ther 1991; 257:972–978

    PubMed  CAS  Google Scholar 

  • Gallo JM, Etse JT, Doshi KJ, Boudinot FD and Chu CK. Hybrid Pharmacokinetic Models to Describe Anti-HIV Nucleoside Brain Disposition following Parent and Prodrug Administration in Mice. Pharm Res 1991; 8:247–253

    PubMed  CAS  Google Scholar 

  • Gao W-Y, Shirasaka T, Johns DG, Broder S and Mitsuya H. Differential Phosphorylation of Azidothymidine, Dideoxycytidine, and Dideoxyinosine in Resting and Activated Peripheral Blood Mononuclear Cells. J Clin Invest 1993; 91:2326–2333

    PubMed  CAS  Google Scholar 

  • Gao W-Y, Agbaria R, Driscoll JS and Mitsuya H. Divergent Anti-Human Immunodeficiency Virus Activity and Anabolic Phosphorylation of 2′,3′-Dideoxynucleoside Analogs in Resting and Activated Human Cells. J Biol Chem 1994; 269:12633–12638

    PubMed  CAS  Google Scholar 

  • Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A and Meier PJ. Organic Anion-Transporting Polypeptides Mediate Transport of Opioid Peptides across Blood-Brain Barrier. J Pharmacol Exp Ther 2000; 294:73–79

    PubMed  CAS  Google Scholar 

  • Ge K, Xu L, Zheng Z, Xu D, Sun L and Liu X. Transduction of Cytosine Deaminase Gene Makes Rat Glioma Cells Highly Sensitive to 5-Fluorocytosine. Int J Cancer 1997; 71:675–679

    PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G and Minn A. Localization of Drug-Metabolizing Enzyme Activities to Blood-Brain Interfaces and Circumventricular Organs. J Neurochem 1994; 62:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea J-F, Minn A and Siest G. A New Aspect of the Protective Functions of the Blood-Brain Barrier: Activities of Four Drug-Metabolizing Enzymes in Isolated Rat Brain Microvessels. Life Sci 1988; 42:2515–2523

    PubMed  CAS  Google Scholar 

  • Gohlke P, Urbach H, Scholkens B and Unger T. Inhibition of Converting Enzyme in the Cerebrospinal Fluid of Rats after Oral Treatment with Converting Enzyme Inhibitors. J Pharmacol Exp Ther 1989; 249:609–616

    PubMed  CAS  Google Scholar 

  • Gomori G. The Distribution of Phosphatase in Normal Organs and Tissues. J Cell Comp Physiol 1941; 17:71–83

    CAS  Google Scholar 

  • Gramsbergen JBP, Hodgkins PS, Rassoulpour A, Turski WA, Guidetti P and Schwarcz R. Brain-Specific Modulation of Kynurenic Acid Synthesis in the Rat. J Neurochem 1997; 69:290–298

    Article  PubMed  CAS  Google Scholar 

  • Greig NH. Drug Delivery to the Brain by Blood-Brain Barrier Circumvention and Drug Modification. In: Neuwelt EA. Implications of the Blood-Brain Barrier and Its Manipulation. New York, Plenum; 1989:311–367

    Google Scholar 

  • Greig NH, Daly EM, Sweeney DJ and Rapoport SI. Pharmacokinetics of Chlorambucil-Tertiary Butyl Ester, a Lipophilic Chlorambucil Derivative that Achieves and Maintains High Concentrations in Brain. Cancer Chemother Pharmacol 1990a; 25:311–319

    PubMed  CAS  Google Scholar 

  • Greig NH, Soncrant TT, Shetty HU, Momma S and Smith QR. Brain Uptakes and Anticancer Activities of Vincristine and Vinblastine are Restricted by their Low Cerebrovascular Permeability and Binding to Plasma Constituents in Rat. Cancer Chemother Pharmacol 1990b; 26:263–268

    PubMed  CAS  Google Scholar 

  • Groothuis DR and Levy RM. The Entry of Antiviral and Antiretroviral Drugs into the Central Nervous System. J NeuroVirology 1997; 3:387–400

    Article  CAS  Google Scholar 

  • Guidetti P, Okuno E and Schwarcz R. Characterization of Rat Brain Kynurenine Amino-Transferases I and II. J Neurosci Res 2000; 50:457–465

    Google Scholar 

  • Gunther W, Pawlak E, Damasceno R, Arnold H and Terzis AJ. Temozolomide Induces Apoptosis and Senescence in Glioma Cells Cultured as Multicellular Spheroids. Br J Cancer 2003; 88:463–469

    PubMed  CAS  Google Scholar 

  • Guyon A, Roques BP, Guyon F, Foucault A, Perdrisot R, Swerts JP and Schwartz JC. Enkephalin Degradation in Mouse Brain Studied by a New HPLC Method: Further Evidence for the Involvement of a Carboxydipeptidase. Life Sci 1979; 25:1605–1612

    PubMed  CAS  Google Scholar 

  • Handelmann GE, Nevins ME, Mueller LL, Arnolde SM and Cordi AA. Milacemide, a Glycine Prodrug, Enhances Performance of Learning Tasks in Normal and Amnestic Rodents. Pharmacol Biochem Behav 1989; 34:823–828

    PubMed  CAS  Google Scholar 

  • Hao Z, Cooney DA, Hartman NR, Perno CF, Fridland A, DeVico AL, Sarngadharan MG, Broder S and Johns DG. Factors Determining the Activity of 2′,3′-Dideoxynucleosides in Suppressing Human Immunodeficiency Virus In Vitro. Mol Pharmacol 1988; 34:431–435

    PubMed  CAS  Google Scholar 

  • Hao Z, Cooney DA, Farquhar D, Perno CF, Zhang K, Masood R, Wilson Y, Hartman NR, Balzarini J and Johns DG. Potent DNA Chain Termination Activity and Selective Inhibition of Human Immunodeficiency Virus Reverse Transcriptase by 2′,3′-Dideoxyuridine-5′-Triphosphate. Mol Pharmacol 1990; 37:157–163

    PubMed  CAS  Google Scholar 

  • Hardebo JE and Owman C. Barrier Mechanisms for Neurotransmitter Monoamines and their Precursors at the Blood-Brain Barrier. Ann Neurol 1979; 8:1–11

    Google Scholar 

  • Hardebo JE and Owman C. Characterization of the In Vitro Uptake of Monoamines into Brain Microvessels. Acta Physiol Scand 1980; 108:223–229

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Falck B, Owman C and Rosengren E. Studies on the Enzymatic Blood-Brain Barrier: Quantitative Measurements of DOPA Decarboxylase in the Wall of Microvessels as Related to the Parenchyma in Various CNS Regions. Acta Physiol Scand 1979; 105:453–460

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Emson PC, Falck B, Owman C and Rosengren E. Enzymes Related to Monoamine Transmitter Metabolism in Brain Microvessels. J Neurochem 1980; 35:1388–1393

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kusuhara H, Endou H and Sugiyama Y. Contribution of Arganic anion Transporters to the Renal Uptake of Anionic Compounds and Nucleoside Derivatives in Rat. J Pharmacol Exp Ther 2003; 305:1087–1097

    PubMed  CAS  Google Scholar 

  • Hawkins ME, Mitsuya H, McCully CM, Godwin KS, Murakami K, Poplack DG and Balis FM. Pharmacokinetics of Dideoxypurine Nucleoside Analogs in Plasma and Cerebrospinal Fluid of Rhesus Monkeys. Antimicrob Agents Chemother 1995; 39:1259–1264

    PubMed  CAS  Google Scholar 

  • Hedaya MA and Sawchuk RJ. Effect of Probenecid on the Renal and Nonrenal Clearances of Zidovudine and its Distribution into Cerebrospinal Fluid in the Rabbit. J Pharm Sci 1989; 78:716–722

    PubMed  CAS  Google Scholar 

  • Henin Y, Gouyette C, Schwartz O, Debouzy J-C, Neumann J-M and Huynh-Dinh T. Lipophilic Glycosyl Phosphotriester Derivatives of AZT: Synthesis, NMR Transmembrane Transport Study, and Antiviral Activity. J Med Chem 1991; 34:1830–1837

    PubMed  CAS  Google Scholar 

  • Hersh LB, Aboukhair N and Watson S. Immunohistochemical Localization of Aminopeptidase M in Rat Brain and Periphery: Relationship of Enzyme Localization and Enkephalin Metabolism. Peptides 1987; 8:523–532

    PubMed  CAS  Google Scholar 

  • Hesse GW, Jacob JN and Shashoua VE. Uptake in Brain and Neurophysiological Activity of Two Lipid Esters of γ-Aminobutyric Acid. Neuropharmacol 1988; 27:637–640

    CAS  Google Scholar 

  • Hinko CN, Seibert K and Crider AM. Anticonvulsant Activity of the Nipecotic Acid Ester, (+/−)-m-Nitrophenyl-3-Piperidine Carboxylate. Neuropharmacology 1984; 23:1009–1014

    PubMed  CAS  Google Scholar 

  • Hinko CN, Crider AM and Wood JD. A Comparison of Prodrug Esters of Nipecotic Acid. Neuropharmacol 1988; 27:475–483

    CAS  Google Scholar 

  • Ho DHW, Pincus C, Carter CJ, Benjamin RS, Freireich EJ and Bodey S, G. P. Distribution and Inhibition of Adenosine Deaminase in Tissues of Man, Rat, and Mouse. Cancer Treat Rep 1980; 64:629–633

    PubMed  CAS  Google Scholar 

  • Hoesterey BL, Galinsky RE and Anderson BD. Dose Dependence in the Plasma Pharmacokinetics and Uptake Kinetics of 2′,3′-Dideoxyinosine (ddI) into Brain and CSF of Rats. Drug Metab Disp 1991; 19:907–912

    CAS  Google Scholar 

  • Hokari M, Wu H-Q, Schwarcz R and Smith QR. Facilitated Brain Uptake of 4-Chlorokynurenine and Conversion to 7-Chlorokynurenic Acid. NeuroReport 1996; 8:15–18

    PubMed  CAS  Google Scholar 

  • Huai-Yun H, Secrest DT, Mark KS, Carney D, Brandquist C, Elmquist WF and Miller DW. Expression of Multidrug Resistance-Associated Protein (MRP) in Brain Microvessel Endothelial Cells. Biochem Biophys Res Commun 1998; 243:816–820

    PubMed  CAS  Google Scholar 

  • Husain I and Tate SS. Formation of the COOH-Terminal Amide Group of Thyrotropin-Releasing Factor. FEBS Lett 1983; 152:277–281

    PubMed  CAS  Google Scholar 

  • Inomata K, Yoshioka T, Nasu F and Mayahara H. Ultracytochemical Studies of Capillary Endothelial Cells in the Rat Central Nervous System. Acta Anat 1984; 118:243–248

    PubMed  CAS  Google Scholar 

  • Ishii-Morita H, Agbaria R, Mullen CA, Hirano H, Koeplin DA, Ram Z, Oldfield EH, Johns DG and Blaese RM. Mechanism of “Bystander Effect” Killing in the Herpes Simplex Thymidine Kinase Gene Therapy Model of Cancer. Gene Ther 1997; 4:244–251

    PubMed  CAS  Google Scholar 

  • Ishikura T, Senou T, Ishihara H, Kato T and Ito T. Drug Delivery to the Brain. DOPA Prodrugs Based on a Ring-Closure Reaction to Quaternary Thiazolium Compounds. Int J Pharm 1995; 116:51–63

    CAS  Google Scholar 

  • Itoh Y, Ogasawara T, Mushiori A, Yamazaki A, Ukai Y and Kimura KJ. Effect of NS-3, a Thyrotropin-Releasing Hormone Analog, on In Vivo Acetylcholine Release in Rat Brain: Regional Differences and its Sites of Action. J Pharmacol Exp Ther 1994; 271:884–890

    PubMed  CAS  Google Scholar 

  • Izquierdo M, Cortes M, De Felipe P, Martin V, Diezguerra J, Talavera A and Perez-Higueras A. Long-Term Rat Survival after Malignant Brain Tumour Regression by Retroviral Gene Therapy. Gene Ther 1995; 2:66–69

    PubMed  CAS  Google Scholar 

  • Jackson I. Controversies in TRH Biosynthesis and Strategies towards the Identification of a TRH Precursor. Ann NY Acad Sci 1989; 553:71–75

    Google Scholar 

  • Jacob JN, Shashoua VE, Campbell A and Baldessarini RJ. γ-Aminobutyric Acid Esters. 2. Synthesis, Brain Uptake, and Pharmacological Properties of Lipid Esters of γ-Aminobutyric Acid. J Med Chem 1985; 28:106–110

    PubMed  CAS  Google Scholar 

  • Jacob JN, Hesse GW and Shashoua VE. Synthesis, Brain Uptake, and Pharmacological Properties of a Glyceryl Lipid Containing GABA and the GABA-T Inhibitor γ-vinyl-GABA. J Med Chem 1990; 33:733–736

    PubMed  CAS  Google Scholar 

  • Jacobs AH, Winkeler A, Dittmar C, Vollmar S, Wienhard K, Reszka R, Voges J and Heiss W-D. Positron-Emission Tomography Monitoring of Anti-Glioblastoma HSV-1-TK Gene Therapy. Gene Ther Reg 2002; 2:49–57

    CAS  Google Scholar 

  • Janinis J, Efstathiou E, Panopoulos C, Samantas E, Aravantinos G, Christodoulou C and Skarlos D. Phase II Study of Temozolomide in Patients with Relapsing High Grade Glioma and Poor Performance Status. Med Oncol 2000; 17:106–110

    PubMed  CAS  Google Scholar 

  • Jefferies AA, Brandon MR, Hunt SV, Williams AF, Gatter KC and Mason DY. Transferrin Receptor on Endothelium of Brain Capillary. Nature 1984; 312:162–163

    PubMed  CAS  Google Scholar 

  • Jette L and Beliveau R. P-Glycoprotein is Strongly Expressed in Brain Capillaries. In: Drewes LR, and Betz AL. Frontiers in Cerebral Vascular Biology: Transport and Its Regulation. New York, Plenum Press; 1993:121–125

    Google Scholar 

  • Johnson M and Fridland A. Phosphorylation of 2′,3′-Dideoxyinosine by Cytosolic 5′-Nucleotidase of Human Lymphoid Cells. Mol Pharmacol 1989; 36:291–295

    PubMed  CAS  Google Scholar 

  • Johnson MD and Anderson BD. Localization of Purine Metabolizing Enzymes in Bovine Brain Microvessel Endothelial Cells: An Enzymatic Blood-Brain Barrier for Dideoxynucleosides? Pharm Res 1996; 13:1881–1886

    PubMed  CAS  Google Scholar 

  • Johnson MD and Anderson BD. Use of Cultured Cerebral Capillary Endothelial Cells in Modeling the Central Nervous System Availability of 2′,3′-Dideoxyinosine. J Pharm Sci 2000; 89:322–335

    PubMed  CAS  Google Scholar 

  • Johnson MA, Ahluwalia G, Connelly MC, Cooney DA, Broder S, Johns DG and Fridland A. Metabolic Pathways for the Activation of the Antiretroviral Agent 2′,3′-Dideoxyadenosine in Human Lymphoid Cells. J Biol Chem 1988; 263:15354–15357

    PubMed  CAS  Google Scholar 

  • Jones RJ and Bischofberger N. Minireview: Nucleotide Prodrugs. Antiviral Res 1995; 27:1–17

    PubMed  CAS  Google Scholar 

  • Jones DB, Rustgi VK, Kornhauser DM, Woods A, Quinn R, Hoofnagle JH and Jones EA. The Disposition of 6-Deoxyacyclovir, a Xanthine Oxidase-Activated Prodrug of Acyclovir, in the Isolated Perfused Rat Liver. Hepatology 1987; 7:345–348

    PubMed  CAS  Google Scholar 

  • Kalaria RN and Harik SI. Blood-Brain Barrier Monoamine Oxidase: Enzyme Characterization in Cerebral Microvessels and Other Tissues from Six Mammalian Species, including Humans. J Neurochem 1987; 49:856–864

    PubMed  CAS  Google Scholar 

  • Kawaguchi T, Ishikawa K, Seki T and Juni K. Ester Prodrugs of Zidovudine. J Pharm Sci 1990; 79:531–533

    PubMed  CAS  Google Scholar 

  • Kikuchi R, Kusuhara H, Sugiyama D and Sugiyama Y. Contribution of Organic Anion Transporter 3 (Slc22a8) to the Elimination of p-Aminohippuric Acid and Benzylpenicillin across the Blood-Brain Barrier. J Pharmacol Exp Ther 2003; 306:51–58

    PubMed  CAS  Google Scholar 

  • Killian DM and Chikhale PJ. A Bioreversible Prodrug Approach Designed to Shift Mechanism of Brain Uptake for Amino-Acid-Containing Anticancer Agents. J Neurochem 2000; 76:966–974

    Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJJ, Roden DM and Wilkinson GR. The Drug Transporter P-Glycoprotein Limits Oral Absorption and Brain Entry of HIV-1 Protease Inhibitors. J Clin Invest 1998; 101:289–294

    PubMed  CAS  Google Scholar 

  • Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mlkhtari K, Diquet B, Salzmann JL and Philippon J. A Phase I/II Study of Herpes Simplex Virus Type I Thymidine Kinase “Suicide” Gene Therapy for Recurrent Glioblastoma. Hum Gene Ther 1998; 9:2595–2604

    PubMed  CAS  Google Scholar 

  • Krause M, Stark H and Schunack W. Azomethine Prodrugs of (R)-α-Methylhistamine, a Highly Potent and Selective Histamine H3-Receptor Agonist. Curr Med Chem 2001; 8:1329–1340

    PubMed  CAS  Google Scholar 

  • Krenitsky TA, Hall WW, de Miranda P, Beauchamp LM, Schaeffer HJ and Whiteman PD. 6-Deoxyacyclovir: A Xanthine Oxidase-Activated Prodrug of Acyclovir. Proc Natl Acad Sci USA 1984; 81:3209–3213

    PubMed  CAS  Google Scholar 

  • Krisch K. Carboxylic Ester Hydrolases. In: Boyer P. The Enzymes. London, Academic; 1971:43–69

    Google Scholar 

  • Krogsgaard-Larsen P and Johnston GAR. Inhibition of GABA Uptake in Rat Brain Slices by Nipecotic Acid, Various Isoxazoles and Related Compounds. J Neurochem 1975; 25:797–802

    PubMed  CAS  Google Scholar 

  • Kusuhara H and Sugiyama Y. Role of Transporters in the Tissue-Selective Distribution and Elimination of Drugs: Transporters in the Liver, Small Intestine, Brain and Kidney. J Control Rel 2002; 78:43–54

    CAS  Google Scholar 

  • Kusuhara H, Suzuki H, Naito M, Tsuruo T and Sugiyama Y. Characterization of Efflux Transport of Organic Anions in a Mouse Brain Capillary Endothelial Cell Line. J Pharmacol Exp Ther 1998; 285:1260–1265

    PubMed  CAS  Google Scholar 

  • Lai FM, Berkowitz B and Spector S. Influence of Age on Brain Vascular and Cardiovascular Monoamine Oxidase Activty in the Tat. Life Sci 1978; 22:2051–2056

    PubMed  CAS  Google Scholar 

  • Lambert DM. Rationale and Applications of Lipids as Prodrug Carriers. Eur J Pharm Sci 2000; 11Suppl. 2:S15–S27

    PubMed  CAS  Google Scholar 

  • Lambert SM, Mergen F, Poupaert JH and Dumont P. Analgesic Potency of S-Acetylthiorphan after Intravenous Administration to Mice. Eur J Pharmacol 1993; 243:129–134

    PubMed  CAS  Google Scholar 

  • Lampe T, Norris J, Risse S, Owens-Williams E and Keenan T. Basic Mechanisms, Diagnosis and Therapeutic Strategies. In: Iqbal K, McLachlan DRC, Winbald B, and Wisniewski HM. Alzheimer’s Disease. New York, John Wiley & Sons, Ltd.; 1991:643

    Google Scholar 

  • Lecomte JM, Costentin J, Vlaiculescu A, Chaillet P, Marcais-Collado H, Llorens-Cortes C, Leboyer M and Schwartz J-C. Pharmacological Properties of Acetorphan, a Parenterally Active “Enkephalinase” Inhibitor. J Pharmacol Exp Ther 1986; 237:937–944

    PubMed  CAS  Google Scholar 

  • Lee S-C and Schwarcz R. Excitotoxic Injury Stimulates Pro-Drug-Induced 7-Chlorokynurenate Formation in the Rat Striatum In Vivo. Neurosci Lett 2001; 304:185–188

    PubMed  CAS  Google Scholar 

  • Lee G, Dallas S, Hong M and Bendayan R. Drug Transporters in the Central Nervous System: Brain Barriers and Brain Parenchyma Considerations. Pharmacol Rev 2001; 53:569–596

    PubMed  CAS  Google Scholar 

  • Leeson PD and Iversen LL. The Glycine Site on the NMDA Receptor: Structure-Activity Relationships and Therapeutic Potential. J Med Chem 1994; 37:4053–4067

    PubMed  CAS  Google Scholar 

  • Lefebvre I, Perigaud C, Pompon A, Aubertin A-M, Girarder J-L, Kirn A, Gosselin G and Imbach J-L. Mononucleoside Phosphotriester Derivatives with S-Acyl-2-Thioethyl Bioconvertible Phosphate-Protecting Groups: Intracellular Delivery of 3′-Azido-2′,3′-Dideoxythymidine 5′-Monophosphate. J Med Chem 1995; 38:3941–3950

    PubMed  CAS  Google Scholar 

  • Leisen C, Langguth P, Herbert B, Dressler C, Koggel A and Spahn-Langguth H. Lipophilicities of Baclofen Ester Prodrugs Correlate with Affinities to the ATP-Dependent Efflux Pump P-Glycoprotein: Relevance for their Permeation across the Blood-Brain Barrier. Pharm Res 2003; 20:772–778

    PubMed  CAS  Google Scholar 

  • Lieb WR and Stein WD. Simple Diffusion across the Membrane Bilayer. In: Stein WD. Transport and Diffusion across Cell Membranes. Orlando, Florida, Academic Press, Inc.; 1986:69–112

    Google Scholar 

  • Lindsay S, Liu TH, Xu JA, Marshall PA, Thompson JK, Parks DA, Freeman BA, Hsu CY and Beckman JS. Role of Xanthine Dehydrogenase and Oxidase in Focal Cerebral Ischemic Injury to Rat. Am J Physiol 1991; 261:H2051–2057

    PubMed  CAS  Google Scholar 

  • Little R, Bailey D, Brewster ME, Estes KS, Clemmons RM, Saab A and Bodor N. Improved Delivery through Biological Membranes. XXXIII. Brain-Enhanced Delivery of Azidothymidine (AZT). J Biopharm Sci 1990; 1:1–18

    CAS  Google Scholar 

  • Lodge D, Johansen GAR, Curtis DR and Brand SJ. Effects of Areca Nut Constituents Arecaidine and Guvacine on the Action of GABA in the Cat Central Nervous system. Brain Res 1977; 136:513–522

    PubMed  CAS  Google Scholar 

  • Lodish HF and Kong N. The Secretory Pathway is Normal in Dithiothreitol-Treated Cells, but Disulfide-Bonded Proteins are Reduced and Reversibly Retained in the Endoplasmic Reticulum. J Biol Chem 1993; 268:20598–20605

    PubMed  CAS  Google Scholar 

  • Lupia RH, Ferencz N, Aggarwal S, Agrawal KC and Lertora JJL (1991). Pharmacokinetics and Brain Penetration of Zidovudine Derived from Two Novel Prodrugs. AIDS Clinical Trials Group Meeting, July 1991, Bethesda, MD

    Google Scholar 

  • Lupia RH, Ferencz N, Lertora JJL, Aggarwal SK, George WJ and Agrawal KC. Comparative Pharmacokinetics of Two Prodrugs of Zidovudine in Rabbits: Enhanced Levels of Zidovudine in Brain Tissue. Antimicrob Agents Chemother 1993; 37:818–824

    PubMed  CAS  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP and Schwartz J-C. High Affinity Enkephalin-Degrading Peptidase in Brain is Increased after Morphine. Nature (Lond) 1978; 276:523–526

    CAS  Google Scholar 

  • Manouilov KK, Manouilova LS, Boudinot FD, Schinazi RF and Chu CK. Biotransformation and Pharmacokinetics of Prodrug 9-(β-D-1,3-Dioxolan-4-yl)-2-Aminopurine and its Antiviral Metabolite 9-((β-D-1,3-Dioxolan-4-yl)Guanine in Mice. Antiviral Res 1997; 35:187–193

    PubMed  CAS  Google Scholar 

  • Marquez VE, Tseng CK-H, Kelley JA, Mitsuya H, Broder S, Roth JS and Driscoll JS. 2′,3′-Dideoxy-2′-Fluoro-Ara-A. An Acid-Stable Purine Nucleoside Active Against Human Immunodeficiency Virus (HIV). Biochem Pharmacol 1987; 36:2719–2722

    PubMed  CAS  Google Scholar 

  • Marquez VE, Tseng CK-H, Mitsuya H, Aoki S, Kelley JA, Ford J, H., Roth JS, Broder S, Johns DG and Driscoll JS. Acid-Stable 2′-Fluoro Purine Dideoxynucleosides as Active Agents against HIV. J Med Chem 1990; 33:978–985

    PubMed  CAS  Google Scholar 

  • Minagawa T, Kohno Y, Suwa T and Tsuji A. Species Differences in Hydrolysis of Isocarbacyclin Methyl Ester (TEI-9090) by Blood Esterases. Biochem Pharmacol 1995; 49:1361–1365

    PubMed  CAS  Google Scholar 

  • Minn A, Ghersi-Egea J-F, Perrin R, Leininger B and Siest G. Drug Metabolizing Enzymes in the Brain and Cerebral Microvessels. Brain Res Rev 1991; 16:65–82

    PubMed  CAS  Google Scholar 

  • Mistry G and Drummond GI. Adenosine Metabolism in Microvessels from Heart and Brain. J Mol Cell Cardiol 1986; 18:13–22

    PubMed  CAS  Google Scholar 

  • Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I and Ishitsuka H. Design of a Novel Oral Fluoropyrimidine Carbamate, Capecitabine, which Generates 5-Fluorouracil Selectively in Tumors by Enzymes Concentrated in Human Liver and Tumor Tissue. Eur J Cancer 1998; 34:1274–1281

    PubMed  CAS  Google Scholar 

  • Mohamedali KA, Guicherit OM, Kellems RE and Rudolph FB. The Highest Levels of Purine Catabolic Enzymes in Mice are Present in the Proximal Small Intestine. J Biol Chem 1993; 268:23728–23733

    PubMed  CAS  Google Scholar 

  • Morgan ME, Chi S-C, Murakami K, Mitsuya H and Anderson BD. Central Nervous System Targeting of 2′,3′-Dideoxyinosine via Adenosine Deaminase-Activated 6-Halo-Dideoxypurine Prodrugs. Antimicrob Agents Chemother 1992; 36:2156–2165

    PubMed  CAS  Google Scholar 

  • Morgan ME, Singhal D and Anderson BD. Quantitative Assessment of Blood-Brain Barrier Damage during Microdialysis. J Pharmacol Exp Ther 1996; 277:1167–1176

    PubMed  CAS  Google Scholar 

  • Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang Y-S, Hosoya K-I and Terasaki T. Rat Organic Anion Transporter 3 (OAT3) is Responsible for Brain-to-Blood Efflux of Homovanillic Acid at the Abluminal Membrane of Brain Capillary Endothelial Cells. J Cereb Blood Flow Metab 2003; 23:432–440

    PubMed  CAS  Google Scholar 

  • Morikawa M, Inoue M and Tsuboi M. Substrate Specificity of Carboxylesterase from Several Animals. Chem Pharm Bull 1976; 24:1661–1664

    PubMed  CAS  Google Scholar 

  • Moriwaki Y, Yamamoto T, Yamaguchi K, Takahashi S and Higashino K. Immunohistochemical Localization of Aldehyde and Xanthine Oxidase in Rat Tissues Using Polyclonal Antibodies. Histochem Cell Biol 1996; 105:71–79

    PubMed  CAS  Google Scholar 

  • Moriwaki Y, Yamamoto T and Higashino K. Enzymes Involved in Purine Metabolism—A Review of Histochemical Localization and Functional Implications. Histol Histopathol 1999; 14:1321–40

    PubMed  CAS  Google Scholar 

  • Moriwaki Y, Yamamoto T, Takahashi S, Tsutsumi Z and Hada T. Widespread Cellular Distribution of Aldehyde Oxidase in Human Tissues Found by Immunohistochemistry Staining. Histol Histopathol 2001; 16:745–753

    PubMed  CAS  Google Scholar 

  • Mullen CA. Transfer of the Bacterial Gene for Cytosine Deaminase to Mammalian Cells Confers Lethal Sensitivity to 5-Fluorocytosine: A Negative Selection System. Proc Natl Acad Sci USA 1992; 89:33–37

    PubMed  CAS  Google Scholar 

  • Murakami K, Shirasaka T, Yoshioka H, Kojima E, Aoki S, Ford H, Jr., Driscoll JS, Kelley JA and Mitsuya H. Escherichia Coli Mediated Biosynthesis and In Vitro Anti-HIV Activity of Lipophilic 6-Halo-2′,3′-Dideoxypurine Nucleosides J Med Chem 1991; 34:1606–1612

    PubMed  CAS  Google Scholar 

  • Nafe C, Cao Y-J, Quinones A, Dobberstein K-U, Kramm CM and Rainov NG. Expression of Mutant Non-Cleavable Fas Ligand on Retrovirus Packaging Cells Causes Apoptosis of Immunocompetent Cells and Improves Prodrug Activation Gene Therapy in a Malignant Glioma Model. Life Sci 2003; 73:1847–1860

    PubMed  CAS  Google Scholar 

  • Namane A, Gouyette C, Fillion M-P, Fillion G and Huynh-Dinh T. Improved Brain Delivery of AZT Using a Glycosyl Phosphotriester Prodrug. J Med Chem 1992; 35:3039–3044

    PubMed  CAS  Google Scholar 

  • Neuwelt EA, Ed. Implications of the Blood-Brain Barrier and Its Manipulation Vol 1: Basic Science Aspects New York, Plenum Publishing Corp.; 1989. 403 p

    Google Scholar 

  • Newlands ES, Blackledge GRP, Slacki JA, Rustin GJS, Smith DB, Stuart NSA, Quarterman CP, Hoffman R, Stevens MFG, Brampton MH and Gibson AC. Phase I Trial of Temozolomide (CCRG 81045:M&B 39831:NSC 362856). Br J Cancer 1992; 65:287–291

    PubMed  CAS  Google Scholar 

  • Noble F, Soleilhac JM, Soroca-Lucas E, Turcaud S, Fournie-Zaluski MC and Roques BP. Inhibition of the Enkephalin-Metabolizing Enzymes by the First Systemically Active Mixed Inhibitor Prodrug RB 101 Induces Potent Analgesic Responses in Mice and Rats. J Pharmacol Exp Ther 1992; 261:181–190

    PubMed  CAS  Google Scholar 

  • Nordstrom M, Abrahamsson T, Ervik M, Forshult E and Regardh CG. Central Nervous and Systemic Kinetics of Ramipril and Ramiprilat in the Conscious Dog. J Pharmacol Exp Ther 1993; 266:147–152

    PubMed  CAS  Google Scholar 

  • O’Brien EM, Tipton KF, Strolin Benedetti M, Bonsignori A, Marrari P and Dostyert P. Is the Oxidation of Milacemide by Monoamine Oxidase a Major Factor in its Anticonvulsant Actions? Biochem Pharmacol 1991; 41:1731–1737

    PubMed  CAS  Google Scholar 

  • Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K-I, Otagiri M and Terasaki T. Role of Blood-Brain Barrier Organic Anion Transporter 3 (OAT3) in the Efflux of Indoxyl Sulfate, a Uremic Toxin: Its Involvement in Neurotransmitter Metabolite Clearance from the Brain. J Neurochem 2002; 83:57–66

    PubMed  CAS  Google Scholar 

  • Ohtsuki S, Takizawa T, Takanaga H, Terasaki N, Kitazawa T, Sasaki M, Abe T, Hosoya KI and Terasaki T. In Vitro Study of the Functional Expression of Organic Anion Transporting Polypeptide 3 at Rat Choroid Plexus Epithelial Cells and its Involvement in the Cerebrospinal Fluid-to-Blood Transport of Estrone-3-Sulfate. Mol Pharm 2003; 63:532–537

    CAS  Google Scholar 

  • Oldendorf WH. Brain Uptake of Radiolabeled Amino Acids, Amines, and Hexoses after Arterial Injection. Am J Physiol 1971; 221:1629–1639

    PubMed  CAS  Google Scholar 

  • Ouyang H, Borchardt RT, Siahaan TJ and Vander Velde D. Synthesis and Conformation Study of a Coumarinic Acid-Based Cyclic Prodrug of Opioid Peptide with Modified Sensitivity to Esterase-Catalyzed Bioconversion. J Pept Res 2002; 59:183–195

    PubMed  CAS  Google Scholar 

  • Parang K, Knaus EE and Wiebe LI. Synthesis, In Vitro Anti-HIV Activity, and Biological Stability of 5′-O-Myristoyl Analogue Derivatives of 3′-Fluoro-2′,3′-Dideoxythymidine (FLT) as Potential Bifunctional Prodrugs of FLT. Nucleosides Nucleotides 1998a; 17:987–1008

    PubMed  CAS  Google Scholar 

  • Parang K, Wiebe LI and Knaus EE. Pharmacokinetics and Tissue Distribution of (+)-3′-Azido-2′,3′-Dideoxy-5′-O-(2-Bromomyristoyl)thymidine, a Prodrug of 3′-Azido-2′,3′-Dideoxythymidine(AZT) in Mice. J Pharm Pharmacol 1998b; 50:989–996

    PubMed  CAS  Google Scholar 

  • Parang K, Wiebe LI and Knaus EE. Synthesis, In Vitro Anti-Human Immunodeficiency Virus Structure-Activity Relationships and Biological Stability of 5′-O-Myristoyl Analog Derivatives of 3′-Azido-2′,3′-Dideoxythymidine (AZT) as Potential Prodrugs. Antiviral Chem Chemother 1998c; 9:311–323

    CAS  Google Scholar 

  • Parang K, Wiebe LI and Knaus EE. Novel Approaches for Designing 5′-O-Ester Prodrugs of 3′-Azido-2′3′-Dideoxythymidine (AZT). Curr Med Chem 2000; 7:995–1039

    PubMed  CAS  Google Scholar 

  • Pardridge WM. Peptide Drug Delivery to the Brain New York, Raven Press; 1991. 357 p

    Google Scholar 

  • Pardridge WM. Brain Drug Delivery andBlood-Brain Barrier Transport. Drug Delivery 1993; 1:83–101

    CAS  Google Scholar 

  • Pardridge WM. Brain Drug Targeting: The Future of Brain Drug Development Cambridge, U.K., Cambridge University Press; 2001. 352 p

    Google Scholar 

  • Pardridge WM. Drug and Gene Delivery to the Brain: The Vascular Route. Neuron 2002; 36:555–558

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Boado RJ and Farrell CR. Brain-Type Glucose Transporter (GLUT-1) is Selectively Localized to the Blood-Brain Barrier. Studies with Quantitative Western Blotting and In Situ Hybridization. J Biol Chem 1990a; 265:18035–18040

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Triguero D and Buciak JL. β-Endorphin Chimeric Peptides: Transport through the Blood-Brain Barrier In Vivo and Cleavage of Disulfide Linkage by Brain. Endocrinology 1990b; 126:977–984

    Article  PubMed  CAS  Google Scholar 

  • Perno CF, Yarchoan R, Cooney DA, Hartman NR, Webb DSA, Hao Z, Mitsuya H, Johns DG and Broder S. Replication of Human Immunodeficiency Virus in Monocytes. J Exp Med 1989; 169:933–951

    PubMed  CAS  Google Scholar 

  • Pizzo PA. Pediatric AIDS: Problems Within Patients. J Infect Dis 1990; 161:316–325

    PubMed  CAS  Google Scholar 

  • Pizzo PA, Eddy J, Falloon J, Balis FM, Murphy RF, Moss H, Wolters P, Brouwers P, Jarosinski P, Rubin M, Broder S, Yarchoan R, Brunetti A, Maha M, Nusinoff-Lehrman S and Poplack DG. Effect of Continuous Intravenous Infusion of Zidovudine (AZT) in Children with Symptomatic HIV Infection. N Engl J Med 1988; 319:889–896

    Article  PubMed  CAS  Google Scholar 

  • Pop E, Loftsson T and Bodor N. Solubilization and Stabilization of a Benzylpenicillin Chemical Delivery System by 2-Hydroxypropyl-β-Cyclodextrin. Pharm Res 1984; 8:1044–1049

    Google Scholar 

  • Prokai L, Ouyang X, Wu W and Bodor N. Chemical Delivery System to Transport a Puroglutamyl Peptide Amide to the Central Nervous System. J Amer Chem Soc 1994; 116:2643–2644

    CAS  Google Scholar 

  • Prokai L, Prokai-Tatrai K, Ouyang X, Kim H-S, Wu W-M, Zharikova A and Bodor N. Metabolism-Based Brain-Targeting System for a Thyrotropin-Releasing Hormone Analogue. J Med Chem 1999; 42:4563–4571

    PubMed  CAS  Google Scholar 

  • Prokai L, Prokai-Tatrai K and Bodor N. Targeting Drugs to the Brain by Redox Chemical Delivery Systems. Med Res Rev 2000; 20:367–416

    PubMed  CAS  Google Scholar 

  • Prokai-Tatrai K, Nguyen V, Zharikova AD, Braddy AC, Stevens J, S. M. and Prokai L. Prodrugs to Enhance Central Nervous System Effects of the TRH-like Peptide pGlu-Glu-Pro-NH2. Bioorg Med Chem Lett 2003; 13:1011–1014

    PubMed  CAS  Google Scholar 

  • Pu AT, Robertson JM and Lawrence TS. Current Status of Radiation Sensitization by Fluoropyrimidines. Oncology (Huntingt) 1995; 9:707–714

    CAS  Google Scholar 

  • Quon CY, Mai K, Patil G and Stampfli HF. Species Differences in the Stereoselective Hydrolysis of Esmolol by Blood Esterases. Drug Metab Dispos 1988; 16:425–428

    PubMed  CAS  Google Scholar 

  • Rainov NG. A Phase III Clinical Evaluation of Herpes Simplex Virus Type 1 Thymidine Kinase and Ganciclovir Gene Therapy as an Adjuvant to Surgical Resection and Radiation in Adults with Previously Untreated Glioblastoma Multiforme. Hum Gene Ther 2000; 11:2389–2401

    PubMed  CAS  Google Scholar 

  • Ram Z, Culver KW, Walbridge S, Blaese RM and Oldfield EH. In Situ Retroviral-Mediated Gene Transfer for the Treatment of Brain Tumours in Rats. Cancer Res 1993; 53:83–88

    PubMed  CAS  Google Scholar 

  • Ranadive SA, Chen AX and Serajuddin ATM. Relative Lipophilicities and Structural-Pharmacological Considerations of Various Angiotensin-Converting Enzyme (ACE) Inhibitors. Pharm Res 1992; 9:1480–1486

    PubMed  CAS  Google Scholar 

  • Rapoport SI. Blood-Brain Barrier in Physiology and Medicine New York, Raven Press; 1976. 316 p

    Google Scholar 

  • Rapoport SI, Ohno K and Pettigrew KD. Drug Entry into the Brain. Brain Res 1979; 172:354–359

    PubMed  CAS  Google Scholar 

  • Raub TJ, Barsuhn CL, Williams LR, Decker DE, Sawada GA and Ho NFH. Use of a Biophysical-Kinetic Model to Understand the Roles of Protein Binding and Membrane Partitioning on Passive Diffusion of Highly Lipophilic Molecules across Cellular Barriers. J Drug Target 1993; 1:269–286

    PubMed  CAS  Google Scholar 

  • Reese T and Karnovsky M. Fine Structural Localization of a Blood-Brain Barrier to Exogenous Peroxidase. J Cell Biol 1967; 34:207–217

    PubMed  CAS  Google Scholar 

  • Regina A, Koman A, Piciotti M, El Hafny B, Center MS, Bergmann R, Couraud PO and Roux F. MRP1 Multidrug Resistance-Associated Protein and PGlycoprotein Expression in Rat Brain Microvessel Endothelial Cells. J Neurochem 1998; 71:705–715

    Article  PubMed  CAS  Google Scholar 

  • Rehemtulla A, Hall DE, Stegman LD, Prasad U, Chen G, Bhojani MS, Chenevert TL and Ross BD. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy. Mol Imaging 2002; 1:43–55

    PubMed  CAS  Google Scholar 

  • Richter K, Kawashima E, Egger R and Kreil G. Biosynthesis of Thyrotropin-Releasing Hormone in the Skin of Xenopus Laevis: Partial Sequence of the Precursor Deduced from Cloned cDNA. EMBO J 1994; 3:617–621

    Google Scholar 

  • Roba J, Cavalier R, Cordi A, Gorissen H, Herin M, De Varebeke JP, Onkelinx C, Remacle M and Van Dorsser W. Milacemide. In: Meldrum BS, and Porter RH. New Anticonvulsant Drugs. London, J. Libbey & Co.; 1986:179–190

    Google Scholar 

  • Robinson PJ and Rapoport SI. Kinetics of Protein Binding Determine Rates of Uptake of Drugs by Brain. Am J Physiol 1986; 351:R1212–R1220

    Google Scholar 

  • Robinson PJ and Rapoport SI. Transport of Drugs. In: Bradbury MWB. Physiology and Pharmacology of the Blood-Brain Barrier. Berlin, Springer-Verlag; 1992:279–300

    Google Scholar 

  • Rooseboom M, Commandeur JNM and Vermeulen NPE. Enzyme-Catalyzed Activation of Anticancer Prodrugs. Pharmacol Rev 2004; 56:53–102

    PubMed  CAS  Google Scholar 

  • Roques BP and Fournie-Zaluski M. Enkephalin Degrading Enzyme Inhibitors: A Physiological Way to New Analgesics and Psychoactive Agents. In: Rapaka RS, and Hawks RL. Opioid Peptides: Molecular, Pharmacology, Biosynthesis and Analysis; 1986:128–154

    Google Scholar 

  • Roques BP, Lucas-Soroca E, Chaillet P, Costentin J and Fournie-Zaluski MC. The Enkephalinase Inhibitor Thiorphan Shows Antinociceptive Activity in Mice. Nature (Lond) 1980; 288:286–288

    CAS  Google Scholar 

  • Rosowsky A, Abelson H, Beardsley G, Ensminger WD, Kufe DW, Steele G and Modest EJ. Pharmacological Studies on the Dibutyl and γ-Monobutyl Esters of Methotrexate in the Rhesus Monkey. Cancer Chemother Pharmacol 1982; 10:55–61

    PubMed  CAS  Google Scholar 

  • Roth JS, McCully CM, Balis FM, Poplack DG and Kelley JA. 2′-β-Fluoro-2′,3′-Dideoxyadenosine, Lodenosine, in Rhesus Monkeys: Plasma and Cerebrospinal Fluid Pharmacokinetics and Urinary Disposition. Drug Metab Disp 1999; 27:1128–1132

    CAS  Google Scholar 

  • Rouleau A, Garbarg M, Ligneau X, Mantion C, Lavie P, Lecomte J-M, Krause M, Stark H, Schunack W and Schwartz J-C. Bioavailability, Antinociceptive and Antiinflammatory Properties of BP 2-94, A Histamine H3 Receptor Agonist Prodrug. J Pharmacol Exp Ther 1997; 281:1085–1094

    PubMed  CAS  Google Scholar 

  • Rouquayrol M, Gaucher B, Greiner J, Aubertin A-M, Vierling P and Guedj R. Synthesis and Anti-HIV Activity of Glucose-Containing Prodrugs Derived from Saquinavir, Indinavir and Nelfinavir. Carbohydrate Res 2001; 336:161–180

    CAS  Google Scholar 

  • Russell JW and Klunk LJ. Comparative Pharmacokinetics of New Anti-HIV agents: 2′,3′-Dideoxyadenosine and 2′,3′-Dideoxyinosine. Biochem Pharmacol 1989; 38:1385–1388

    PubMed  CAS  Google Scholar 

  • Saito Y, Buciak J, Yang J and Pardridge WM. Vector-Mediated Delivery of {sr1257#x007D;I-Labeled β-Amyloid Peptide A-β1-40 through the Blood-Brain Barrier and Binding to Alzheimer Disease Amyloid of the A-β1-40/Vector Complex. Proc Natl Acad Sci USA 1995; 92:10227–10231

    PubMed  CAS  Google Scholar 

  • Saletu B, Grunberger J and Linzmayer L. Acute and Subacute Central Nervous System Effects of Milacemide in Elderly People: Double-Blind Placebo Controlled Quantitative Electroencephalography and Psychometric Investigations. Arch Gerentol Geriat 1986; 5:165–182

    CAS  Google Scholar 

  • Salituro FG, Tomlinson RC, Baron BM, Palfreyman MG, McDonald IA, Schmidt W, Wu H-Q, Guidetti P and Schwarcz R. Enzyme-Activated Antagonists of the Strychnine-Insensitive Glycine/NMDA Receptor. J Med Chem 1994; 37:334–336

    PubMed  CAS  Google Scholar 

  • Samtani MN, Schwab M, Nathanielsz PW and Jusko WJ. Stabilization and HPLC Analysis of Beztamethasone Sodium Phosphate in Plasma. J Pharm Sci 2004; 93:726–732

    PubMed  CAS  Google Scholar 

  • Sasaki S, Kanda T, Ishibashi N, Yamamoto F, Haradahira T, Okauchi T, Meda J, Suzuki K and Maeda M. 4,5,9,10-Tetrahydro-1,4-Ethanobenz [b]quinolizine as a Prodrug for its Quinolizinium Cation as a Ligand to the Open State of the TCP-Binding Site of NMDA Receptors. Bioorg Med Chem Lett 2001; 11:519–521

    PubMed  CAS  Google Scholar 

  • Sawchuk RJ and Yang Z. Investigation of Distribution, Transport and Uptake of Anti-HIV Drugs to the Central Nervous System. Adv Drug Deliv Rev 1999; 39:5–31

    PubMed  CAS  Google Scholar 

  • Schinkel AH and Jonker JW. Mammalian Drug Efflux Transporters of the ATP Binding Cassette (ABC) Family: An Overview. Adv Drug Deliv Rev 2003; 55:3–29

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Smit JJM, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM and Borst P. Disruption of the Mouse MDR1a P-Glycoprotein Gene Leads to a Deficiency in the Blood-Brain Barrier and to Increased Sensitivity to Drugs. Cell 1994; 77:491–502

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CAAM and van Deemter L. P-Glycoprotein in the Blood-Brain Barrier of Mice Influences the Brain Penetration and Pharmacological Activity of Many Drugs. J Clin Invest 1996; 97:2517–2524

    Article  PubMed  CAS  Google Scholar 

  • Schlienger N, Peyrottes S, Kassem T, Imbach J-L, Gosselin G, Aubertin A-M and Perigaud C. S-Acyl-2-Thioethyl Aryl Phosphotriester Derivatives as Mononucleotide Prodrugs. J Med Chem 2000; 43:4570–4574

    PubMed  CAS  Google Scholar 

  • Schrader WP, West CA and Strominger NL. Localization of Adenosine Deaminase and Adenosine Deaminase Complexing Protein in Rabbit Brain. J Histochem Cytochem 1987; 35:443–451

    PubMed  CAS  Google Scholar 

  • Schwartz BL, Hashtroudi S, Herting RL, Handerson H and Deutsch SI. Glycine Prodrug Facilitates Memory Retrieval in Humans. Neurology 1991; 41:1341–1343

    PubMed  CAS  Google Scholar 

  • Seetharaman S, Barrand MA, Maskell L and Scheper RJ. Multidrug Resistance-Related Transport Proteins in Isolated Human Brain Microvessels and in Cells Cultured from these Isolates. J Neurochem 1998; 70:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Semba J, Curzon G and Patsalos PN. Antiepileptic Drug Pharmacokinetics and Neuropharmacokinetics in Individual Rats by Repetitive Withdrawal of Blood and Cerebrospinal Fluid: Milacemide. Br J Pharmacol 1993; 108:1117–1124

    PubMed  CAS  Google Scholar 

  • Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, Sorensen AG and Barbier N. A Phase 1-2 Clinical Trial of Gene Therapy for Recurrent Glioblastoma Multiforme by Tumour Transduction with Herpes Simplex Thymidine Kinase Gene followed by Ganciclovir. Hum Gene Ther 1999; 10:2325–2335

    PubMed  CAS  Google Scholar 

  • Shanmuganathan K, Koudriakova T, Nampalli S, Du J, Gallo JM, Schinazi RF and Chu CK. Enhanced Brain Delivery of an Anti-HIV Nucleoside 2′-F-ara-ddI by Xanthine Oxidase Mediated Biotransformation. J Med Chem 1994; 37:821–827

    PubMed  CAS  Google Scholar 

  • Shashoua VE, Jacob JN, Ridge R, Campbell A and Baldessarini RJ. γ-Aminobutyric Acid Esters. 1. Synthesis, Brain Uptake, and Pharmacological Studies of Aliphatic and Steroid Esters of γ-Aminobutyric Acid. J Med Chem 1984; 27:659–664

    PubMed  CAS  Google Scholar 

  • Sheha M, Al-Tayeb A, El-Sherief H and Farag H. New Carrier for Specific Delivery of Drugs to the Brain. Bioorg Med Chem 2003; 11:1865–1872

    PubMed  CAS  Google Scholar 

  • Shek E. Chemical Delivery Systems and Prodrugs of Anticonvulsive Drugs. Adv Drug Delivery Rev 1994; 14:227–241

    CAS  Google Scholar 

  • Shirasaka T, Chokekijchai S, Yamada A, Gosselin G, Imbach J-L and Mitsuya H. Comparative Analysis of Anti-Human Immunodeficiency Virus Type 1 Activities of Dideoxynucleoside Analogs in Resting and Activated Peripheral Blood Mononuclear Cells. Antimicrob Agents Chemother 1995; 39:2555–2559

    PubMed  CAS  Google Scholar 

  • Shirasaka T, Murakami K, Ford H, Kelly JA, Yoshioka H, Kojima E, Aoki S, Broder S and Mitsuya H. Lipophilic Halogenated Congeners of 2′,3′-Dideoxypurine Nucleosides Active Against Human Immunodeficiency Virus In Vitro. Proc Natl Acad Sci USA 1990; 87:9426–9430

    PubMed  CAS  Google Scholar 

  • Singhal D and Anderson BD. Optimization of the Local Inhibition of Intestinal Adenosine Deaminase (ADA) by Erythro-9-(2-Hydroxy-3-Nonyl)adenine: Enhanced Oral Delivery of an ADA-Activated Prodrug for Anti-HIV Therapy. J Pharm Sci 1998; 87:578–585

    PubMed  CAS  Google Scholar 

  • Singhal D, Morgan ME and Anderson BD. The Role of Altered Metabolism in Dideoxynucleoside Pharmacokinetics. Studies of 2′-Fluoro-2′,3′-Dideoxyinosine and 2′-Fluoro-2′,3′-Dideoxyadenosine in Rats. Drug Metab Disp 1996; 24:1155–1161

    CAS  Google Scholar 

  • Singhal D, Morgan ME and Anderson BD. Role of Brain Tissue Localized Purine Metabolizing Enzymes in the Central Nervous System Delivery of Anti-HIV Agents 2′-β-Fluoro-2′,3′-Dideoxyinosine and 2′-β-Fluoro-2′,3′-Dideoxyadenosine in Rats. Pharm Res 1997; 14:786–792

    PubMed  CAS  Google Scholar 

  • Singhal D, Ho NF and Anderson BD. Absorption and Intestinal Metabolism of Purine Dideoxynucleosides and an Adenosine Deaminase-Activated Prodrug of 2′,3′-Dideoxyinosine in the Mesenteric Vein Cannulated Rat Ileum. J Pharm Sci 1998; 87:569–577

    PubMed  CAS  Google Scholar 

  • Smith QR. Drug Delivery to Brain and the Role of Carrier-Mediated Transport. In: Drewes LR, and Betz AL. Frontiers in Cerebral Vascular Biology: Transport and Its Regulation. New York, Plenum Press; 1993:83–100

    Google Scholar 

  • Solhonne B, Gros C, Pollard H and Schwartz JC. Major Localization of Aminopeptidase M in Rat Brain Microvessels. Neuroscience 1987; 22:225–232

    PubMed  CAS  Google Scholar 

  • Somogyi G, Buchwald P, Nomi D, Prokai L and Bodor N. Targeted Drug Delivery to the Brain via Phosphonate Derivatives II. Anionic Chemical Delivery System for Zidovudine (AZT). Int J Pharm 1998; 166:27–35

    CAS  Google Scholar 

  • Somogyi G, Nishitani S, Nomi D, Buchwald P, Prokai L and Bodor N. Targeted Drug Delivery to the Brain via Phosphonate Derivatives. I. Design, Synthesis and Evaluation of an Anionic Chemical Delivery System for Testosterone. Int J Pharm 1997; 166:15–26

    Google Scholar 

  • Starnes MC and Cheng Y-C. Cellular Metabolism of 2′,3′-Dideoxycytidine, a Compound Active Against Human Immunodeficiency Virus In Vitro. J Biol Chem 1987; 262:988–991

    PubMed  CAS  Google Scholar 

  • Stella VJ and Himmelstein KJ. Prodrugs and Site-Specific Delivery. J Med Chem 1980; 23:1275–1282

    PubMed  CAS  Google Scholar 

  • Stella VJ and Himmelstein KJ. Critique of Prodrugs and Site Specific Delivery. In: Bundgaard H, Hansen AB, and Kofod H. Optimization of Drug Delivery (Alfred Benzon Symposium). Copenhagen, Munksgaard; 1982:134–155

    Google Scholar 

  • Stella V and Himmelstein KJ. Site-Specific Drug Delivery via Prodrugs. In: Bundgaard H. Design of Prodrugs. Amsterdam, Elsevier; 1985:177–198

    Google Scholar 

  • Sugiyama Y, Kusuhara H and Suzuki H. Kinetic and Biochemical Analysis of Carrier-Mediated Efflux of Drugs through the Blood-Brain and Blood-Cerebrospinal Fluid Barriers: Importance in the Drug Delivery to the Brain. J Control Release 1999; 62:179–86

    PubMed  CAS  Google Scholar 

  • Sun H, Dai H, Shaik N and Elmquist WF. Drug Efflux Transporters in the CNS. Adv Drug Deliv Rev 2003; 55:83–105

    PubMed  CAS  Google Scholar 

  • Sunderland A, Mellow A, Cohen R, Lawlor B, Jill J, Newhouse P, Cohen M and Murphy D. Acute Effects of High-Dose Thyrotropin Releasing Hormone Infusions in Alzheimer’s Disease. Psychopharmacology 1989; 98:403–407

    PubMed  Google Scholar 

  • Takasawa K, Terasaki T, Suzuki H and Sugiyama Y. In Vivo Evidence for Carrier-Mediated Efflux Transport of 3′-Azido-3′-Deoxythymidine and 2′,3′-Dideoxyinosine across the Blood-Brain Barrier via a Probenecid-Sensitive Transport System. J Pharmacol Exp Ther 1997; 281:369–375

    PubMed  CAS  Google Scholar 

  • Tamai I and Tsuji A. Drug Delivery through the Blood-Brain Barrier. Adv Drug Deliv Rev 1996; 19:401–424

    CAS  Google Scholar 

  • Tamai I and Tsuji A. Transporter-Mediated Permeation of Drugs across the Blood-Brain Barrier. J Pharm Sci 2000; 89:1371–1388

    PubMed  CAS  Google Scholar 

  • Tan X, Boudinot FD, Chu CK, Egron D, Perigaud C, Gosselin G and Imbach J-L. Pharmacokinetics of bis(t-butyl-SATE)-AZTMP, a Bispivaloylthioethyl Prodrug for Intracellular Delivery of Zidovudine Monophosphate, in Mice. Antivir Chem Chemother 2000; 11:203–212

    PubMed  CAS  Google Scholar 

  • Tapfer MK, Sebestyen L, Kurucz I, Horvath K, Szelenyi I and Bodor N. New Evidence for the Selective, Long-Lasting Central Effects of the Brain-Targeted Estradiol, Estredox. Pharmacol Biochem Behav 2004; 77:423–429

    PubMed  CAS  Google Scholar 

  • Terada LS, Willingham IR, Rosandich ME, Leff JA, Kindt GW and Repine JE. Generation of Superoxide Anion by Brain Endothelial Cell Xanthine Oxidase. J Cell Physiol 1991; 148:191–196

    PubMed  CAS  Google Scholar 

  • Tomlinson E. Theory and Practice of Site-Specific Drug Delivery. Adv Drug Del Rev 1987; 1:87–164

    CAS  Google Scholar 

  • Tsukamoto Y, Kato Y, Ura M, Horii I, Ishitsuka H, Kusuhara H and Sugiyama Y. A Physiologically Based Pharmacokinetic Analysis of Capecitabine, a Triple Prodrug of 5-FU in Humans: The Mechanism for Tumor-Selective Accumulation of 5-FU. Pharm Res 2001; 18:1190–1202

    PubMed  CAS  Google Scholar 

  • Tsuzuki N, Hama T, Kawada M, Hasui A, Konishi R, Shiwa S, Ochi Y, Futaki S and Kitagawa K. Adamantane as a Brain-Directed Drug Carrier for Poorly Absorbed Drug. 2. AZT Derivatives Conjugated with the 1-Adamantane Moiety. J Pharm Sci 1994; 83:481–484

    PubMed  CAS  Google Scholar 

  • Tuntland T, Ravasco RJ, Al-Habet S and Unadkat JD. Active Efflux of Zidovudine and 2′,3′-Dideoxyinosine out of the Cerebrospinal Fluid when Administered Alone and in Combination to the Macaca nemestrina. Pharm Res 1994; 11:312–317

    PubMed  CAS  Google Scholar 

  • Turner AJ, Hooper NM and Kenny AJ. Metabolism of Neuropeptides. In: Kenny AJ, and Turner AJ. Mammalian Ectoenzymes Amsterdam, Elsevier; 1987:221–241

    Google Scholar 

  • Van der Weyden MB and Kelley WN. Human Adenosine Deaminase. Distribution and Properties. J Biol Chem 1976; 251:5448–5456

    PubMed  Google Scholar 

  • Van Dorsser W, Barris D, Cordi A and Roba J. Anticonvulsant Activity of Milacemide. Arch Int Pharmacodyn 1983; 266:239–249

    PubMed  Google Scholar 

  • Van Hoof VO, Deng JT and De Broe ME. How Do Plasma Membranes Reach the Circulation? Clin Chim Acta 1997; 266:23–31

    PubMed  Google Scholar 

  • Varasi M, Della Torre A, Heidempergher F, Pevarello P, Speciale C, guidetti P, Wells DR and Schwarcz R. Derivatives of Kynurenine as Inhibitors of Rat Brain Kynurenine Aminotransferase. Eur J Med Chem 1996; 31:11–21

    CAS  Google Scholar 

  • Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y and Endou H. Rat Multispecific Organic Anion Transporter 1 (rOAT1) Transports Zidovudine, Acyclovir, and Other Antiviral Nucleoside Analogs. J Pharmacol Exp Ther 2000; 294:844–849

    PubMed  CAS  Google Scholar 

  • Wade LA and Katzman R. Synthetic Amino Acids and the Nature of L-Dopa Transport at the Blood-Brain Barrier. J Neurochem 1975; 25:837–842

    PubMed  CAS  Google Scholar 

  • Wang H. Brain Delivery of Nipecotic Acid by the Administration of its Ester Prodrug via the Nasal Route. College of Pharmacy. Lexington, KY, University of Kentucky; 2003:172

    Google Scholar 

  • Wang H, Hussain AA and Wedlund PJ. Nipecotic Acid: Systemic Availability and Brain Delivery After Nasal Administration of Nipecotic Acid and n-Butyl Nipecotate to Rats. Pharm Res 2005; 22:556–562

    PubMed  CAS  Google Scholar 

  • Wang Y and Sawchuk RJ. Zidovudine Transport in the Rabbit Brain during Intravenous and Intracerebroventricular Infusion. J Pharm Sci 1995; 84:871–876

    PubMed  CAS  Google Scholar 

  • Wang Y, Wei Y and Sawchuk RJ. Zidovudine Transport Within the Rabbit Brain during Intracerebroventricular Administration and the Effect of Probenecid. J Pharm Sci 1995; 86:1484–1490

    Google Scholar 

  • Wang ZH, Samuels S, Gama Sosa MA and Kolodny EH. 5-Fluorocytosine-Mediated Apoptosis and DNA Damage in Glioma Cells Engineered to Express Cytosine Deaminase and their Enhancement with Interferon. J Neurooncol 1998; 36:219–229

    PubMed  CAS  Google Scholar 

  • Wang B, Nimkar K, Wang W, Zhang H, Shan D, Gudmundsson O, Gangwar S, Siahaan T and Borchardt RT. Synthesis and Evaluation of the Physicochemical Properties of Esterase-Sensitive Cyclic Prodrugs of Opioid Peptides Using Coumarinic Acid and Phenylpropionic Acid Linkers. J Pept Res 1999; 53:370–382

    PubMed  CAS  Google Scholar 

  • Wang ML, Yung WK, Royce ME, Schomer DF and Theriault RL. Capecitabine for 5-Fluorouracil-Resistant Brain Metastases from Breast Cancer. Am J Clin Oncol 2001; 24:421–424

    PubMed  CAS  Google Scholar 

  • Wang WJ, Tai C-K, Kasahara N and Chen TC. Highly Efficient and Tumor-Restricted Gene Transfer to Malignant Gliomas by Replication-Competent Retroviral Vectors. Hum Gene Ther 2003; 14:117–127

    PubMed  CAS  Google Scholar 

  • Wen Y-D, Remmel RP, Pham PT, Vince R and Zimmerman CL. Comparative Brain Exposure to (-)-Carbovir after (-)-Carbovir or (-)-6-Aminocarbovir Intravenous Infusion in Rats. Pharm Res 1995; 12:911–915

    PubMed  CAS  Google Scholar 

  • Witt KA, Huber JD, Egleton RD, Roberts MJ, Bentley MD, Guo L, Wei H, Yamamura HI and Davis TP. Pharmacodynamic and Pharmacokinetic Characterization of Poly(ethylene glycol) Conjugation to Met-Enkephalin Analog [D-Pen2, D-Pen5]-Enkephalin (DPDPE). J Pharmacol Exp Ther 2001; 298:848–856

    PubMed  CAS  Google Scholar 

  • Wong SL, Hedaya MA and Sawchuk RJ. Competitive Inhibition of Zidovudine Clearance by Probenecid during Continuous Coadministration. Pharm Res 1992; 9:228–235

    PubMed  CAS  Google Scholar 

  • Wu H-Q, Lee S-C, Scharfman HE and Schwarcz R. L-4-Chlorokynurenine Attenuates Kainate-Induced Seizures and Lesions in the Rat. Exp Neurol 2002; 177:222–232

    PubMed  CAS  Google Scholar 

  • Xiang T-X and Anderson BD. The Relationship between Permeant Size and Permeability in Lipid Bilayer Membranes. J Membr Biol 1994; 140:111–121

    PubMed  CAS  Google Scholar 

  • Xiang T-X and Anderson BD. Influence of Chain Ordering on the Selectivity of Dipalmitoylphosphatidylcholine Bilayer Membranes for Permeant Size and Shape. Biophys J 1998; 75:2658–2671

    Article  PubMed  CAS  Google Scholar 

  • Yang JZ, Chen W and Borchardt RT. In Vitro Stability and In Vivo Pharmacokinetic Studies of a Model Opioid Peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its Cyclic Prodrugs. J Pharmacol Exp Ther 2002; 303:840–848

    PubMed  CAS  Google Scholar 

  • Yarbrough G. Thyrotropin Releasing Hormone and CNS Cholinergic Neurons. Life Sci 1983; 33:111–118

    PubMed  CAS  Google Scholar 

  • Yoshikawa T, Sakaeda T, Sugawara T, Hirano K and Stella VJ. A Novel Chemical Delivery System for Brain Targeting. Adv Drug Del Rev 1999; 36:255–275

    CAS  Google Scholar 

  • Yu PH and Davis BA. Some Pharmacological Implications of MAO-Mediated Deamination of Branched Aliphatic Amines: 2-Propyl-1-Aminopentane and N-(2-Propylpentyl)glycinamide as Valproic Acid Precursors. J Neurol Trans Suppl 1990; 32:89–92

    CAS  Google Scholar 

  • Yu PH and Davis BA. Simultaneous Delivery of Valproic Acid and Glycine to the Brain. Deamination of 2-Propylpentylglycinamide by Monoamine Oxidase B. Mol Chem Neuropath 1991; 15:37–49

    Article  CAS  Google Scholar 

  • Yu PH, Davis BA, Boulton AA and Zuo DM. Deamination of Aliphatic Amines by Type B Monoamine Oxidase and Semicarbazide-Sensitive Amine Oxidase; Pharmacological Implications. J Neural Transm Suppl 1994; 41:397–406

    PubMed  CAS  Google Scholar 

  • Zhang Y, Han H, Elmquist WF and Miller DW. Expression of Various Multidrug Resistance-Associated Protein (MRP) Homologues in Brain Microvessel Endothelial Cells. Brain Res 2000; 876:148–153

    PubMed  CAS  Google Scholar 

  • Zielke CL and Suelter CH. Purine, Purine Nucleoside, and Purine Nucleotide Aminohydrolases. In: Boyer PD. The Enzymes. London, Academic; 1971:47–78

    Google Scholar 

  • Zlokovic BV. Cerebrovascular Permeability to Peptides: Manipulations of Transport Systems at the Blood-Brain Barrier. Pharm Res 1995; 12:1395–1406

    PubMed  CAS  Google Scholar 

  • Zlokovic BV, Lipovac MN, Begley DJ, Davson H and Rakic L. Slow Penetration of Thyrotropin-Releasing Hormone across the Blood-Brain Barrier of an In Situ Perfused Guinea Pig Brain. J Neurochem 1988; 51:252–257

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Anderson, B.D. (2007). Prodrug Approaches for Drug Delivery to the Brain. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_17

Download citation

Publish with us

Policies and ethics