Skip to main content

Magnetic Susceptibility Effects in High Field MRI

  • Chapter
Ultra High Field Magnetic Resonance Imaging

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 26))

Abstract

In high-magnetic-field MRI, both valuable image contrast and undesirable artifacts associated with the magnetic susceptibility effects are significantly increased. The magnetic field distortion in and by the human body is described with computer modeling methods in the human head. The manifestations of the resultant image artifacts include signal loss, blurring, and geometric distortion and are dependent on imaging methods. The treatments of the artifacts in the specific imaging sequences are described and demonstrated with human studies at 3 and 7 Tesla and animal studies at field strengths as high as 14 Tesla. With these in vivo studies, the enhanced image contrast produced by the increased field strength and the improved image quality by the artifact reduction methods provide strong and stimulating evidence for exciting potential scientific applications of high field MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

9. References

  1. Robitaille PM, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24:2–8.

    Article  PubMed  CAS  Google Scholar 

  2. Krauss JD. 1984. In Electromagetics, p. 216. New York: McGraw-Hill.

    Google Scholar 

  3. Hopkins JA, Wehrli FW. 1997. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500.

    Article  PubMed  CAS  Google Scholar 

  4. Weisskoff RM, Kiihne S. 1992. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents, and human blood. Magn Reson Med 24:375–383.

    Article  PubMed  CAS  Google Scholar 

  5. Frahm J, Haase A, Matthaei D. 1986. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:321–327.

    Article  PubMed  CAS  Google Scholar 

  6. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. 2001. Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594.

    Article  PubMed  CAS  Google Scholar 

  7. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. 1995. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143.

    PubMed  CAS  Google Scholar 

  8. Miszkiel KA, Paley MNJ, Wilkinson ID, Hall-Craggs MA, Ordidge R, Kendall BE, Miller RF, Harrison MJG. 1997. The measurement of R 2, R 2*, and R 2 = in HIV-infected patients using the prime sequence as a measure of brain iron deposition. Magn Reson Imag 15:1113–1119.

    Article  CAS  Google Scholar 

  9. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA. 1986. MRI of brain iron. Am J Roentgenol 147:103–110.

    CAS  Google Scholar 

  10. Steffens DC, McDonald WM, Tupler LA, Boyko OB, Krishnan KR. 1996. Magnetic resonance imaging changes in putamen nuclei iron content and distribution in normal subjects. Psychiatry Res 68:55–61.

    Article  PubMed  CAS  Google Scholar 

  11. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. 1994. Assessment of relative brain iron concentrations using T 2-weighted and T 2*-weighted MRI at 3.0 Tesla. Magn Reson Med 32:335–341.

    Article  PubMed  CAS  Google Scholar 

  12. LeVine SM. 1997. Iron deposition in multiple sclerosis and Alzheimer’s disease brains. Brain Res 760:298–303.

    Article  PubMed  CAS  Google Scholar 

  13. Deibel MA, Ehmann WD, Markesbery WR. 1996. Copper, iron, and zinc imbalance in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142.

    Article  PubMed  CAS  Google Scholar 

  14. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P. 1995. A quantitative analysis of isoferritins in select regions of aged, Parkinsonian, and Alzheimer’s diseased brains. J Neurochem 65:717–724.

    Article  PubMed  CAS  Google Scholar 

  15. Connor JR, Menzies SL, St Martin SM, Mufson EJ. 1992. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s in the evaluation diseased brains. J Neurosci Res 31:75–83.

    Article  PubMed  CAS  Google Scholar 

  16. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA. 1995. Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–716.

    PubMed  CAS  Google Scholar 

  17. Good PF, Perl DP, Bierer LM, Schmeidler J. 1992. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292.

    Article  PubMed  CAS  Google Scholar 

  18. Halliday W. 1995. The nosology of Hallervorden-Spatz disease. J Neurol Sci 134(suppl):84–91.

    Article  PubMed  Google Scholar 

  19. Miyajima H, Takahashi Y, Kamata T, Shimzu H, Sakai N, Bitlin JD. 1997. Use of desferrioxamine in the treatment of Aceruloplasminemia. Ann Neurol 41:404–407.

    Article  PubMed  CAS  Google Scholar 

  20. Steinberg PM, Ross JS, Modic MT, Tkach J, Masaryk TJ, Haacke EM. 1990. The value of fast gradient-echo MR sequences of brain disease. Am J Neuroradiol 11:59–67.

    PubMed  CAS  Google Scholar 

  21. Henkelman M, Kucharczyk W. 1994. Optimization of gradient-echo MR for calcium detection. Am J Neuroradiol 15:465–472.

    PubMed  CAS  Google Scholar 

  22. Atlas SW, Grossman RI, Hackney DB, Gomori JM, Campagna N, Goldberg HI, Bilaniuk LT, Zimmerman RA. 1988. Calcified intracranial lesions: detection with gradient-echo-acquisition rapid MR imaging. Am J Roentgenol 150:1383–1389.

    CAS  Google Scholar 

  23. Guckel F, Brix G, Rempp K, Deimling M, Rother J, Georgi M. 1994. Assessment of cerebral blood volume with dynamic T 2* contrast enhanced gradient-echo imaging. J Comput Assist Tomogr 18:344–351.

    Article  PubMed  CAS  Google Scholar 

  24. Rosen BR, Belliveau JW, Vevea JMT, Brady J. 1990. Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265.

    Article  PubMed  CAS  Google Scholar 

  25. Yamaguchi H, Igarashi H, Katayama Y, Terashi A. 1998. An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI. Nippon Ika Daigaku Zasshi 65:148–156.

    PubMed  CAS  Google Scholar 

  26. Ida M, Yamashita M, Shimizu S, Kurisu Y. 1997. T 2*-contrast perfusion study: principles, theory and clinical utility in evaluating cerebral hemodynamics. Nippon Rinsho 55:1719–1725.

    PubMed  CAS  Google Scholar 

  27. Menon RS, Ogawa S, Tank DW, Ugurbil K. 1993. Tesla gradient recalled echo characteristics of Photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386.

    Article  PubMed  CAS  Google Scholar 

  28. Ernst RR. 1966. Sensitivity enhancement in magnetic resonance. Adv Magn Reson 2:1–135.

    CAS  Google Scholar 

  29. Brunner P, Ernst RR. 1979. Sensitivity and performance time in NMR imaging. J Magn Reson 33:83–106.

    CAS  Google Scholar 

  30. Li S, Dardzinski BJ, Collins CM, Yang QX, Smith MB. 1996. Three-dimensional mapping of the static magnetic field inside the human head. Magn Reson Med 36:705–714.

    Article  PubMed  CAS  Google Scholar 

  31. Ferziger JH. 1981. Numerical methods for engineering application. New York: John Wiley & Sons.

    Google Scholar 

  32. Krauss JD. 1984. Electromagetics. New York: McGraw-Hill.

    Google Scholar 

  33. Hopkins JA, Wehrli FW. 1997. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37:494–500.

    Article  PubMed  CAS  Google Scholar 

  34. Collins CM, Li S, Smith MB. 1998. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 40:847–856.

    Article  PubMed  CAS  Google Scholar 

  35. Collins CM, Yang B, Yang QX, Smith MB. 2002. Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head. Magn Reson Imag 20:413–424.

    Article  Google Scholar 

  36. Reichenbach JR, Venkatesan R, Yablonsky DA, Thompson MR, Lai S, Haacke EM. 1997. Theory and application od static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imag 7:266–279.

    Article  CAS  Google Scholar 

  37. Yang QX, Dardzinski BJ, Li S, Smith MB. 1997. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med 37:331–335.

    Article  PubMed  CAS  Google Scholar 

  38. Ro YM, Cho ZH. 1995. Susceptibility magnetic resonance imaging using spectral decomposition. Magn Reson Med 33:521–528.

    Article  PubMed  CAS  Google Scholar 

  39. Frahm J, Merboldt KD, Hanicke W. 1988. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 6:474–480.

    Article  PubMed  CAS  Google Scholar 

  40. Cho ZH, Ro YM. 1992. Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200.

    Article  PubMed  CAS  Google Scholar 

  41. Haacke EM, Tkach JA, Parrish TB. 1989. Reduction of T2* dephasing in gradient fieldecho imaging. Radiology 170:457–462.

    PubMed  CAS  Google Scholar 

  42. Posse S, Aue WP. 1990. Susceptibility artifacts in spin-echo and gradient-echo imaging. J Magn Reson 88:473–492.

    Google Scholar 

  43. Yang QX, Dardzinski BJ, Williams GD, Smith MB. 1996. Magnetic susceptibility contrast using an imbalanced slice refocusing gradient: a gradient-echo method for high field MRI. Proc Int Soc Magn Reson Med 1676.

    Google Scholar 

  44. Frahm J, Merbold KD, Hanicke W. 1995. The effects of intravoxel dephasing and incomplete slice refocusing on susceptibility contrast in gradient-echo MRI. J Magn Reson B 109:234–237.

    Article  CAS  Google Scholar 

  45. Constable RT, Spencer DD. 1999. Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117.

    Article  PubMed  CAS  Google Scholar 

  46. Yang QX, Williams GD, Demeure RJ, Mosher TJ, Smith MB. 1998. Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 39:402–409.

    Article  PubMed  CAS  Google Scholar 

  47. Stenger VA, Boada FE, Noll DC. 2000. Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T2*-weighted functional MRI. Magn Reson Med 44:525–531.

    Article  PubMed  CAS  Google Scholar 

  48. Stenger VA, Boada FE, Noll DC. 2003. Variable-density spiral 3D tailored RF pulses. Magn Reson Med 50:1100–1106.

    Article  PubMed  Google Scholar 

  49. Pauly J, Nishimura D, Macovski A. 1989. A k-space analysis of small-tip angle excitation. J Magn Reson 81:43–56.

    Google Scholar 

  50. Yang QX, Smith MB, Briggs RW, Rycyna RE. 1999. Microimaging at 14 tesla using GESEPI for removal of magnetic susceptibility artifacts in T2*-weighted image contrast. J Magn Reson 141:1–6.

    Article  PubMed  Google Scholar 

  51. Yablonskiy DA, Haacke EM. 1994. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763.

    Article  PubMed  CAS  Google Scholar 

  52. Abduljalil AM, Robitaille PML. 1999. Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23:832–841.

    Article  PubMed  CAS  Google Scholar 

  53. Yang QX, Smith MB, Zhu X, Liu H, Michaeli S, Zhang X. 2000. T2*-Weighted human brain imaging with the GESEPI at 7.0 Tesla. Proc Int Soc Magn Reson Med 1684.

    Google Scholar 

  54. Constable RT. 1995. Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imag 5:746–752.

    Article  CAS  Google Scholar 

  55. Chen NK, Wyrwicz AM. 1999. Removal of introvoxel dephasing artifact in gradientecho images using a field-map based RF refocusing technique. Magn Reson Med 42:807–812.

    Article  PubMed  CAS  Google Scholar 

  56. Posse S, Shen Z, Kiselev V, Kemna LJ. 2003. Single-shot T2* mapping with 3D compensation of local susceptibility gradients in multiple regions. Neuroimage 18:390–400.

    Article  PubMed  Google Scholar 

  57. de Zwart JA, van Gelderen P, Kellman P, Duyn JH. 2002. Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020.

    Article  PubMed  Google Scholar 

  58. Glover GH. 1999. 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med 42:290–299.

    Article  PubMed  CAS  Google Scholar 

  59. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P. 2002. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866.

    Article  PubMed  Google Scholar 

  60. Fernandez-Seara MA, Wehrli FW. 2000. Postprocessing technique to correct for background gradients in image-based R2* measurements. Magn Reson Med 44:358–366.

    Article  PubMed  CAS  Google Scholar 

  61. Merbold KD, Finsterbusch J, Frahm J. 2000. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191.

    Article  CAS  Google Scholar 

  62. Yang Y, Gu H, Zhan W, Xu S, Silbersweig DA, Stern E. 2002. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med 48:278–289.

    Article  PubMed  Google Scholar 

  63. Yang QX, Stenger VA, Smith MB, Boada F, Noll D. 2001. Reduction of the blurring artifacts due to the local field inhomogeneity in spiral imaging. Proc Int Soc Magn Reson Med 741.

    Google Scholar 

  64. Glover GH, Law CS. 2001. Spiral in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46:515–522.

    Article  PubMed  CAS  Google Scholar 

  65. Schmithorst VJ, Dardzinski BJ, Holland SK. 2001. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan. IEEE Trans Med Imag 20:535–539.

    Article  CAS  Google Scholar 

  66. Wild JM, Martin WR, Allen PS. 2002. Multiple gradient echo sequence optimized for rapid, single-scan mapping of R2* at high B0. Magn Reson Med 48:867–876.

    Article  PubMed  Google Scholar 

  67. Gu H, Feng H, Zhan W, Xu S, Silbersweig DA, Stern E, Yang Y. 2002. Single-shot interleaved z-shim EPI with optimized compensation for signal losses due to susceptibility-induced field inhomogeneity at 3 T. Neuroimage 17:1358–1364.

    Article  PubMed  Google Scholar 

  68. Li Z, Wu G, Zhao X, Luo F, Li SJ. 2002. Multiecho segmented EPI with z-shimmed background gradient compensation (MESBAC) pulse sequence for fMRI. Magn Reson Med 48:312–321.

    Article  PubMed  Google Scholar 

  69. Wilson JL, Jenkinson M, Jezzard P. 2003. Protocol to determine the optimal intraoral passive shim for minimisation of susceptibility artifact in human inferior frontal cortex. Neuroimage 19:1802–1811.

    Article  PubMed  Google Scholar 

  70. Deichmann R, Gottfried JA, Hutton C, Turner R. 2003. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441.

    Article  PubMed  CAS  Google Scholar 

  71. Yang QX, Wang J, Smith MB, Meadowcroft M, Sun X, Eslinger PJ, Golay X. 2004. Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field. Magn Reson Med 52:1418–1423.

    Article  PubMed  Google Scholar 

  72. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  73. Bammer R, Keeling SL, Augustin M, Pruessmann KP, Wolf R, Stollberger R, Hartung HP, Fazekas F. 2001. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 46:548–554.

    Article  PubMed  CAS  Google Scholar 

  74. Golay X, Pruessmann KP, Weiger M, Crelier GR, Folkers PJM, Kollias SS, Boesiger P. 2000. PRESTO-SENSE: an ultra-fast whole brain fMRI technique. Magn Reson Med 43:779–786.

    Article  PubMed  CAS  Google Scholar 

  75. Jaermann T, Crelier G, Pruessmann KP, Golay X, Netsch T, Van Muiswinkel AM, Mori S, Van Zijl PC, Valavanis A, Kollias S, Boesiger P. 2004. SENSE-DTI at 3 T. Magn Reson Med 51:230–236.

    Article  PubMed  CAS  Google Scholar 

  76. Bornert P, Aldefeld B, Eggers H. 2000. Reversed spiral MR imaging. Magn Reson Med 44:479–484.

    Article  PubMed  CAS  Google Scholar 

  77. Kim DH, Adalsteinsson E, Glover GH, Spielman DM. 2002. Regularized higher-order in vivo shimming. Magn Reson Med 48:715–722.

    Article  PubMed  Google Scholar 

  78. Wilson JL, Jenkinson M, Jezzard P. 2002. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn Reson Med 48:906–914.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, Q.X., Smith, M.B., Wang, J. (2006). Magnetic Susceptibility Effects in High Field MRI. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics