Skip to main content

Ultra High Field MRI: High-Frequency Coils

  • Chapter
Ultra High Field Magnetic Resonance Imaging

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 26))

Abstract

This chapter reviews RF volume, array, and surface coil modeling, design, construction, control, safety, and human in-vivo application examples for field strengths from 4 to 9.4 T. While a comprehensive variety of coils is included, focus is on the transmission line (TEM) technology head, body, surface, and array coils developed by the author over the past 16 years. References provide a supplement to this material for the many details that cannot be covered in a single book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7. References

  1. Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim S-G, Menon R, Merkle H, Ogawa S. 1993. Imaging at high magnetic fields: initial experiences at 4T. Magn Reson Q 9:259–277.

    PubMed  CAS  Google Scholar 

  2. Pan J, Vaughan J, Kuzniecky R, Pohost G, Hetherington H. 1995. High resolution neuroimaging at 4.1T. Magn Reson Imag 13:915–921.

    Article  CAS  Google Scholar 

  3. Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G. 1995. Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1T. Ann Neurol 38:396–404.

    Article  PubMed  CAS  Google Scholar 

  4. Gruetter R. 1996. Observation of resolved glucose signals in 1H NMR spectra of human brain at 4 tesla. Magn Reson Med 36:1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Robitaille PML, Abduljalil A, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres D, Spigos D. 1998. Human magnetic resonance imaging at 8T. NMR Biomed 11:263–265.

    Article  PubMed  CAS  Google Scholar 

  6. Yacoub E, Pfeufer P, Van de Mortele P-F, Adriany G, Andersen P, Vaughan T, Merkle H, Ugurbil K, Hu X. 2001. Imaging brain function in human at 7 tesla. Magn Reson Med 45(4):588–594.

    Article  PubMed  CAS  Google Scholar 

  7. Vaughan J, Garwood M, Collins C, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith M, Ugurbil K. 2001. 7T vs. 4T: RF power, homogeneity, & signal-to-noise comparison in head images. Magn Reson Med 46:24–30.

    Article  PubMed  CAS  Google Scholar 

  8. Abragam A. 1978. The principles of nuclear magnetism. Oxford: Clarendon Press.

    Google Scholar 

  9. Hoult D, Lauterbur P. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425.

    CAS  Google Scholar 

  10. Dickenson R. 1986. Measurement changes in tissue temperature using MR imaging. J Comput Assist Tomogr 10:468.

    Google Scholar 

  11. Brown R, Martens H, Patrick J, Zypman F. 1988. A layer model for RF penetration, heating and screening in NMR. J Magn Reson 80:225–247.

    Google Scholar 

  12. Shellock F, Crues J. 1988. Temperature changes caused by MR imaging of the brain. Am J Neuroradiol 9:287–291.

    PubMed  CAS  Google Scholar 

  13. Athey T. 1989. A model of the temperature rise in the head due to magnetic resonance imaging procedures. Magn Reson Med 9:177–184.

    Article  PubMed  CAS  Google Scholar 

  14. Bottomley P, Andrew E. 1978. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23:630–643.

    Article  PubMed  CAS  Google Scholar 

  15. Stutzman W, Thiele G. 1981. Antenna theory and design. New York: John Wiley & Sons.

    Google Scholar 

  16. Libby L. 1945. Special aspects of balanced shielded loops. Proc IRE Waves Electrons 34:641–646.

    Google Scholar 

  17. Graf F. 1991. Modern dictionary of electronics. Indianapolis: Howard W. Sams.

    Google Scholar 

  18. Halliday D, Resnick R. 1974. Fundamentals of physics. New York: John Wiley & Sons.

    Google Scholar 

  19. Vaughan J, Hetherington H, Harrison J, Otu J, Pan J, Noa P, den Hollander J, Pohost G. 1993. High frequency coils for clinical nuclear magnetic resonance imaging and spectroscopy. Physica Medica 9:147–153.

    Google Scholar 

  20. Vaughan J, Hetherington H, Otu J, Pan J, Pohost G. 1994. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 32:206–218.

    Article  PubMed  CAS  Google Scholar 

  21. Vaughan J, Adriany G, Garwood M, Yacoub E, Duong T, DelaBarre L, Andersen P, Ugurbil K. 2002. A detunable TEM volume coil for high field NMR. Magn Reson Med 47(5):990–1000.

    Article  PubMed  CAS  Google Scholar 

  22. Vaughan J, Adriany G, Snyder C, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K. 2004. Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859.

    Article  PubMed  CAS  Google Scholar 

  23. Harrington R. 1961. Time-harmonic electromagnetic fields. New York: McGraw-Hill.

    Google Scholar 

  24. Barfuss H, Fischer H, Hentschel D, Ladebeck R, Vetter J. 1988. Whole body imaging and spectroscopy with a 4 tesla system. Radiology 169:811–816.

    PubMed  CAS  Google Scholar 

  25. Harrison J, Vaughan J. 1996. Finite element modeling of head coils for high frequency magnetic resonance application. Ann Rev Prog Appl Comput Electromagn 12:1220–1226.

    Google Scholar 

  26. Yang Q, Wang J, Zhang X, Collins C, Smith M, Liu H, Zhu X-H, Vaughan J, Ugurbil K, Chen W. 2002. An analysis of wave behavior in lossy dielectric samples at high field. Magn Reson Med 47:982–989.

    Article  PubMed  Google Scholar 

  27. Brezovich I, Young J, Wang M. 1983. Temperature distributions in hyperthermia by electromagnetic induction: a theoretical model for the thorax. Med Phys 10:57.

    Article  PubMed  CAS  Google Scholar 

  28. Duck F. 1990. Physical properties of tissue. New York: Academic Press.

    Google Scholar 

  29. Durney C, Massoudi H, Iskander M. 1986. Radiofrequency radiation dosimetry. Brooks Airforce Base, TX: USAF School of Aerospace Medicine.

    Google Scholar 

  30. Pennes HH. 1948. Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1:93–122.

    Google Scholar 

  31. Carlson J. 1988. Radiofrequency field propagation in conductive NMR samples. J Magn Reson 78:563–573.

    Google Scholar 

  32. Brown R, Haacke M, Martens M, Patrick J, Zypman F. 1988. A layer model for RF penetration, heating, and screening in NMR. J Magn Reson 80:225–247.

    Google Scholar 

  33. Foster K, Schwan H. 1989. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Bioeng 17:25.

    CAS  Google Scholar 

  34. Stuchly M. 1990. Applications of time-varying fields in medicine. Crit Rev Bioeng 18:89.

    CAS  Google Scholar 

  35. Kanal E, Shellock F, Lalith T. 1990. Safety considerations in MR imaging. Radiology 176:593–606.

    PubMed  CAS  Google Scholar 

  36. Röschmann P. 1987. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys 14:922–931.

    Article  PubMed  Google Scholar 

  37. Vaughan J, Harrison J, Hetherington H, Evanochko W, Pohost G. 1992. Radiofrequency surface coil heating measurements in porcine muscle. Proc Soc Magn Reson 4026.

    Google Scholar 

  38. Vaughan J, Harrison J, Thorn B, Pohost G. 1993. Hot rings: high frequency heating patterns in tissues. Proc Soc Magn Reson 1369.

    Google Scholar 

  39. Vaughan J, Haupt N, Noa P, Vaughn J, Pohost G. 1995. RF front end for a 4.1 tesla clinical NMR spectrometer. IEEE Trans Nucl Sci 42(4):1333–1337.

    Article  Google Scholar 

  40. Reykowski A, Wright S, Porter J. 1995. Design of matching networks for low noise preamplifiers. Magn Reson Med 33:848–852.

    Article  PubMed  CAS  Google Scholar 

  41. Roemer P, Edelstein W, Hayes C, Sousa S, Mueller O. 1990. The NMR phased array. Magn Reson Med 16:192–225.

    Article  PubMed  CAS  Google Scholar 

  42. Sodickson D, Manning W. 1997. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603.

    Article  PubMed  CAS  Google Scholar 

  43. Pruessmann K, Weiger M, Scheidegger M, Boesiger P. 1999. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962.

    Article  PubMed  CAS  Google Scholar 

  44. Griswold M, Jakob P, Edelman R, Sodickson D. 2000. A multicoil array designed for cardiac SMASH imaging. MAGMA 10:105–113.

    Article  PubMed  CAS  Google Scholar 

  45. Edelstein W, Hardy C, Mueller O. 1986. Electronic decoupling of surface coil receivers for NMR imaging and spectroscopy. J Magn Reson 67:156–161.

    CAS  Google Scholar 

  46. Purcell E, Torrey H, Pound R. 1946. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37.

    Article  CAS  Google Scholar 

  47. Schneider H, Dullenkopf P. 1977. Slotted tube resonator: a new NMR probe heat at high observing frequencies. Rev Sci Instrum 48:68.

    Article  Google Scholar 

  48. Röschmann P [Philips, assignee]. 1988. High-frequency coil system for a magnetic resonance imaging appartus. US Patent 4746866.

    Google Scholar 

  49. Bridges J. 1988. Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices. US Patent 4751464.

    Google Scholar 

  50. Baertlein B, Ozbay O, Ibrahim T, Lee R, Yu Y, Kangarlu A, Robitaille P. 2000. Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 47:535–545.

    Article  PubMed  CAS  Google Scholar 

  51. Beck B, Plant D, Grant S, Thelwall P, Silver X, Mareci T, Benveniste H, Smith M, Collins C, Crozier S. 2002. Progress in MRI at the University of Florida. MAGMA 13:152–157.

    Article  PubMed  CAS  Google Scholar 

  52. Bogdanov G, Ludwig R. 2002. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging. Magn Reson Med 47:579–593.

    Article  PubMed  CAS  Google Scholar 

  53. Peshkovsky AS, Kennan RP, Fabry ME, Avdievich NI. 2005. Open half-volume transverse electromagnetic coil for high field magnetic resonance imaging. Magn Reson Med 53:937–943.

    Article  PubMed  CAS  Google Scholar 

  54. Vaughan J. [Massachusetts General Hospital, assignee]. 2003. RF coil for imaging system. US Patent 6633131.

    Google Scholar 

  55. Zhang X, Ugurbil K, Chen W. 2003. A microstrip transmission line volume coil for human head MR imaging at 4T. J Magn Reson 161:242–251.

    Article  PubMed  CAS  Google Scholar 

  56. Chipman R. 1968. Theory and problems of transmission lines. New York: McGraw-Hill.

    Google Scholar 

  57. Vaughan J, Roschmann P, Pan J, Hetherington H, Chapman B, Noa P, Vermeulen J, Pohost G. 1991. A double resonant surface coil for 4.1 tesla whole body NMR. Proc Soc Magn Reson 722.

    Google Scholar 

  58. Alderman D, Grant D. 1979. An efficient decoupler coil design which reduces heating in conductive samples in superconducting spectrometers. J Magn Reson 36:447–451.

    CAS  Google Scholar 

  59. Hayes C, Edelstein W, Schenck J, Mueller O, Eash M. 1985. An efficient highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5T. J Magn Reson 63:622–628.

    CAS  Google Scholar 

  60. Roemer P, Edelstein W [General Electric, assignee]. 1989. Double-sided RF shield for RF coil contained within gradient coils of NMR imaging device. US Patent 4879515.

    Google Scholar 

  61. Watkins R, Rohling K, Piel J, Rosenfeld D, Kelley D, Lenkinski R, Kressel H, Montag A. 2001. Whole body RF coil for 3 tesla MRI system. Proc Int Soc Magn Reson Med 1123.

    Google Scholar 

  62. Krause N [Siemens Aktiengesellschaft, Munich, assignee]. 1985. High frequency field system for nuclear magnetic resonance appartus. US Patent 4506224.

    Google Scholar 

  63. Adriany G, Van de Mortele P-F, Wiesinger F, Moeller S, Strupp J, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann K, Boesiger P, Vaughan J, Ugurbil K. 2005. Transmit and receive transmission line arrays for 7 tesla parallel imaging. Magn Reson Med 53:434–445.

    Article  PubMed  Google Scholar 

  64. Vaughan J, Adriany G, Ugurbil K, Andersen P, Strupp J [University of Minnesota, assignee]. 2005. Parallel transceiver for nuclear magnetic resonance system. US Patent Application 0050116715.

    Google Scholar 

  65. Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J. 1988. Spectroscopy and imaging with a 4 tesla whole-body MR system. NMR Biomed 1:151.

    Article  PubMed  CAS  Google Scholar 

  66. Collins C, Li S, Smith M. 1998. SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Magn Reson Med 40:1–10.

    Article  Google Scholar 

  67. Ibrahim T, Lee R, Abduljalil A, Baertlein B, Robitaille PML. 2001. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings. Magn Reson Imag 19:219–226.

    Article  CAS  Google Scholar 

  68. Van de Mortele P-F, Akgun C, Adriany G, Moeller S, Ritter J, Collins C, Smith M, Vaughan J, Ugurbil K. 2005. B1 destructive interferences and spatial phase patterns at 7 tesla with a head transceiver array coil. Magn Reson Med. In press.

    Google Scholar 

  69. Ibrahim TS, Lee R, Robitaille PML. 2001. Effect of RF coil excitation on field inhomogeneity at ultra-high fields: a field optimized TEM resonator. Magn Reson Imag 19:1339–1347.

    Article  CAS  Google Scholar 

  70. Vaughan J, Myer D. 2005. Parallel transceiver. New York, Minneapolis: Collaboration CPC, Bioengineering Inc.

    Google Scholar 

  71. Vaughan J, DelaBarre L, Snyder C, Adriany G, Collins C, Van de Mortele P-F, Ritter J, Strupp J, Andersen P, Tian J, Smith M, Ugurbil K. 2005. RF image optimization at 7T and 9.4T. Proc Int Soc Magn Reson Med 953.

    Google Scholar 

  72. Vaughan J [University of Alabama Birmingham, assignee]. 1996. High frequency volume coils for nuclear magnetic resonance applications. US Patent 5557247.

    Google Scholar 

  73. Vaughan J, Adriany G, Garwood M, Yacoub E, Duong T, DelaBarre L, Andersen P, Ugurbil K. 2002. A detunable transverse electromagnetic (TEM) volume coil for high field NMR. Magn Reson Med 47:990–1000.

    Article  PubMed  CAS  Google Scholar 

  74. Barberi E, Gati J, Rutt B, Menon R. 2000. A transmit-only/recieve-only (TORO) RF system for high field MRI/MRS applications. Magn Reson Med 43:284–289.

    Article  PubMed  CAS  Google Scholar 

  75. Adriany G, Ritter J, Van de Mortele P-F, Moeller S, Snyder C, Voje B, Vaughan J, Ugurbil K. 2005. A geometrically adjustable 16 channel transceive transmission line array for 7 tesla. Proc Int Soc Magn Reson Med 673.

    Google Scholar 

  76. Vaughan J, Garwood M, Ugurbil K. 2001. Volume coils for highest field MRI. IEEE Trans Ant Prop Soc Int Symp 1:378–381.

    Google Scholar 

  77. Vaughan J. 2005. How to do RF at high fields. Proc Int Soc Magn Reson Med 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vaughan, J.T. (2006). Ultra High Field MRI: High-Frequency Coils. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics