Skip to main content

Non-Laser Light Sources for Three-Dimensional Microscopy

  • Chapter

Abstract

The first light source used for microscopy was the sun and the second was a candle flame. Both are hot plasmas that emit essentially black-body radiation (Fig. 6.1) with the addition of a few elemental lines. The introduction of light sources powered by electricity, both arcs and incandescent filaments, added a new level of convenience and flexibility but required improvements in the light-harvesting optics needed to illuminate the imaged area with light that was both intense and uniform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford, England.

    Google Scholar 

  • Boyde, A., and Petrànň, M., 1990, Light budgets, light and heavy losses:One-or-two sided tandem scanning (real time, direct view, confocal microscopy), J. Microsc. 160:335-342.

    Google Scholar 

  • Braun, D., and Merrin, J., 2003, Exciting brightfield fluorescence with power LEDs, Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY, 10021, p. 22.

    Google Scholar 

  • Briers, J.D., 1993, Speckle fluctuations and biomedical optics: Implications and applications, Optical Eng. 32:277-421.

    Article  Google Scholar 

  • De Basio, R., Bright, G.R., Ernst, L.A., Waggoner, A.S., and Taylor, D.L., 1987, cells, J. Cell Biol. 105:1613-1622.

    Article  Google Scholar 

  • Ellis, G.W., 1979, A fiber-optic phase-randomizer laser for microscopy by laser, J. Cell Biol. 83:303a.

    Google Scholar 

  • Gerritsen H.C., van der Oord, C., Levine, Y., Munro, I., Myring, W., Shaw, D.,and Rommerts, F., 1992, Synchrotron radiation as a light source in con-focal microscopy of biological processes. In: Time-Resolved Spectroscopy for Biochemistry III, Proc. SPIE 1640 (J.R. Lakowicz, ed.), SPIE—The International Society for Optical Engineering Press, Bellingham, Wash-ington, pp. 754-760.

    Google Scholar 

  • Hard, R., Zeh, R., and Allen, R.D., 1977, Phase-randomizer laser illuminator for microscopy, J. Cell Sci. 23:335.

    CAS  PubMed  Google Scholar 

  • Hell, S., Witting, S., Schickfus, M.V., Wijnaendts van Resandt, R.W., Hunklinger, S., Smolka, E., and Neiger, M., 1991, A confocal beam scanning white-light microscope, J. Microsc. 163:179-187.

    Google Scholar 

  • Herman, B., 1998, Fluorescence Microscopy, 2nd ed., BIOS Scientific Pub-lishers, Oxford, 1998.

    Google Scholar 

  • Hermann, P., Maliwal, B.P., Lin, H.J., and Lakowicz, J.R., 2001, Frequency- domain fluorescence microscopy with LED as a light source, J. Microsc. 203:176-181.

    Article  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1990, Determination of the three- dimensional imaging properties of an optical microscope system: partial confocal behavior in epi-fluorescence microscopy. Biophys. J. 57:325- 333.

    Article  CAS  PubMed  Google Scholar 

  • Inoué, S., 1997, Videomicroscopy, The Fundamentals, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Kam, Z., Jones, M.O., Chen, H., Agard, D., and Sedat, J.W., 1993, Design and construction of an optimal illumination system for quantitative widefield multi-dimensional microscopy. Bioimaging 1:71-81.

    Article  Google Scholar 

  • Loveland, L., 1970, Photomicrography, John Wiley and Sons, New York.

    Google Scholar 

  • Luthjens, L.H., Hom, M.L., and Vermealen, M.J.W., 1990, Improved metal compound ellipsoidal-spherical mirror condenser for xenon short-arc lamp, Rev. Sci. Inst. 61:33-35.

    Google Scholar 

  • Minsky, M., 1988, Memoir on inventing the confocal scanning microscopy, Scanning 10:128-138.

    Google Scholar 

  • Perduijn, A., de Krijger, S., Claessens, J., Kaito, N., Yagi, T., Hsu, S.T., Sakakibara, M., Ito, T., Okada, S., 2004, Light output feedback solution for RGB LED backlight applications. (Application note available on the Lumiled home page.)

    Google Scholar 

  • Petrànň, M., Hadravsky, M., and Boyde, A., 1985, The tandem scanning reflected light microscope, Scanning 7:97-108.

    Google Scholar 

  • Piller, H., 1977, Microscope Photometry, Springer-Verlag, New York, p. 253.

    Google Scholar 

  • Reynolds, G.O., DeValis, J.B., Parrent, G.B. Jr., and Thompson, B.J., 1989, Parametric design of a conceptual high-resolution optical lithographic printer, In: The New Physical Optics Notebook, SPIE, The International Society for Optical Engineering Press, Bellingham, Washington, pp. 549-564.

    Google Scholar 

  • Schubert, F., 2003, Light-Emitting Diodes, Cambridge University Press, New York.

    Google Scholar 

  • Steen, H.B., and Sorensen, O.I., 1993, Pulse modulation of the excitation light source boosts the sensitivity of an arc lamp-based flow cytometer, Cytom- etry 14:115-122.

    Article  CAS  Google Scholar 

  • Steigerwald, D.A., Bhat, J.C., Collins, D., Fletcher, R.M., Holcomb, M.O., Ludowise, M.J., Martin, P.S., Rudaz, S.L., 2002, IEEE Journal of Selected Topics in Quantum Electronics, Lumileds Lighting, San Jose, California, 8:310-320.

    CAS  Google Scholar 

  • van der Oord, C.J.R., 1992, Synchrotron radiation as a light source in confo- cal microscopy, Rev. Sci. Instrum. 63:632-633.

    Article  Google Scholar 

  • Woodlee, R.L., Fuh, M-R.S., Patonay, G., and Warner, I.M., 1989, Enhanced DC arc-lamp performance for spectroscopic application, Rev. Sci. Instrum. 60:3640-3642.

    Article  CAS  Google Scholar 

  • Young, I.T., 1989, Image fidelity: Characterizing the image transfer function, Methods Cell. Biol. 30:1-45.

    CAS  Google Scholar 

  • Zhou, X., Pfeiffer, M., Huang, J.S., Blochwitz-Nimoth, J., Qin, D.S., Werner, A., Drechsel, J., Maennig, B., Leo, K., 2002, Low-voltage inverted trans- parent vacuum deposited organic light-emitting diodes using electrical doping, Appl. Phys. Lett. 81:922-924.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nolte, A., Pawley, J.B., Höring, L. (2006). Non-Laser Light Sources for Three-Dimensional Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_6

Download citation

Publish with us

Policies and ethics