Skip to main content

Practical Considerations in the Selection and Application of Fluorescent Probes

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Due to its sensitivity, multiplexing capacity, and applicability to live specimens, fluorescence is the dominant contrast mechanism used in three-dimensional (3D) biological microscopy. Use of fluorescence detection generally requires specimens to be labeled with extrinsic probes. This is because most biological molecules and structures of interest are not intrinsically fluorescent in spectral ranges that are useful for detection, and even those that are cannot usually be discriminated from each other on the basis of their intrinsic fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamczyk, M., Mattingly, P.G., Shreder, K., and Yu, Z., 1999, Surface plasmon resonance (SPR) as a tool for antibody conjugate analysis, Bioconjug. Chem. 10:1032–1037.

    CAS  Google Scholar 

  • Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., and Tsien, R.Y., 2002, New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications, J. Am. Chem. Soc. 124:6063–6076.

    CAS  PubMed  Google Scholar 

  • Adler, H.I., 1990, The use of microbial membranes to achieve anaerobiosis, Crit. Rev. Biotechnol. 10:119–127.

    CAS  PubMed  Google Scholar 

  • Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., and Waggoner, A.S., 2004, Noninvasive imaging of quantum dots in mice, Bioconjug. Chem. 15:79–86.

    CAS  Google Scholar 

  • Beghetto, C., Renken, C., Eriksson, O., Jori, G., Bernardi, P., and Ricchelli, F., 2000, Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies, Eur. J. Biochem. 267:5585–5592.

    CAS  PubMed  Google Scholar 

  • Berlier, J.E., Rothe, A., Buller, G., Bradford, J., Gray, D.R., Filanowski, B.J., Telford, W.G., Yue, S., Liu, J., Cheung, C.Y., Chang, W., Hirsch, J.D., Beechem, J.M., Haugland, R.P., and Haugland, R.P., 2003, Quantitative comparison of long-wavelength AlexaFluor dyes to Cy dyes: Fluorescence of the dyes and their conjugates, J. Histochem. Cytochem. 51:1699–1712.

    CAS  PubMed  Google Scholar 

  • Berrios, M., Conlon, K.A., and Colflesh, D.E., 1999, Antifading agents for confocal fluorescence microscopy, Methods Enzymol. 307:55–79.

    CAS  PubMed  Google Scholar 

  • Beste, G., Schmidt, F.S., Stibora, T., and Skerra, A., 1999, Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold, Proc. Natl. Acad. Sci. USA 96: 1898–1903.

    CAS  PubMed  Google Scholar 

  • Bestvater, F., Spiess, E., Stobrawa, G., Hacker, M., Feurer, T., Porwol, T., Berchner-Pfannschmidt, U., Wotzlaw, C., and Acker, H., 2002, Twophoton fluorescence absorption and emission spectra of dyes relevant for cell imaging, J. Microsc. 208:108–115.

    CAS  Google Scholar 

  • Billinton, N., and Knight, A.W., 2001, Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence, Anal. Biochem. 291:175–197.

    CAS  Google Scholar 

  • Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.

    CAS  PubMed  Google Scholar 

  • Breen, C.M., Sykes, D.B., Baehr, C., Fricker, G., and Miller, D.S., 2004, Fluorescein-methotrexate transport in rat choroid plexus analyzed using confocal microscopy, Am. J. Physiol. 287:F562–F569.

    CAS  Google Scholar 

  • Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 2002, Multicolor laser scanning confocal immunofluorescence microscopy: Practical application and limitations, Methods Cell Biol. 70:165–244.

    CAS  PubMed  Google Scholar 

  • Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., 1998, Semiconductor nanocrystals as fluorescent biological labels, Science 281:2013–2016.

    CAS  PubMed  Google Scholar 

  • Bunting, J.R., 1992, A test of the singlet oxygen mechanism of cationic dye photosensitization of mitochondrial damage, Photochem. Photobiol. 55: 81–87.

    CAS  Google Scholar 

  • Byers, G.W., Gross, S., and Henrichs, P.M., 1976, Direct and sensitized photooxidation of cyanine dyes, Photochem. Photobiol. 23:37–43.

    CAS  Google Scholar 

  • Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y., 2002, A monomeric red fluorescent protein, Proc. Natl. Acad. Sci. USA 99:7877–7882.

    CAS  PubMed  Google Scholar 

  • Cao, F., Eckert, R., Elfgang, C., Nitsche, J.M., Snyder, S.A., Hulser, D.F., Willecke, K., and Nicholson, B.J., 1998, A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes, J. Cell Sci. 111:31–43.

    CAS  Google Scholar 

  • Chakrabarti, R., Pfeiffer, N.E., Wylie, D.E., and Schuster, S.M., 1989, Incorporation of monoclonal antibodies into cells by osmotic permeabilization: effect on cellular metabolism, J. Biol. Chem. 264:8214–8221.

    CAS  PubMed  Google Scholar 

  • Chalfie, M., and Kain, S., eds., 1998, Green Fluorescent Protein: Properties, Applications and Protocols, Wiley-Liss, New York.

    Google Scholar 

  • Chan, W.C., and Nie, S., 1998, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281:2016–2018.

    CAS  PubMed  Google Scholar 

  • Charpilienne, A., Nejmeddine, M., Berois, M., Parez, N., Neumann, E., Hewat, E., Trugnan, G., and Cohen, J., 2001, Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells, J. Biol. Chem. 276:29361–29367.

    CAS  PubMed  Google Scholar 

  • Coralli, C., Cemazar, M., Kanthou, C., Tozer, G.M., and Dachs, G.U., 2001, Limitations of the reporter green fluorescent protein under simulated tumor conditions, Cancer Res 61:4784–4790.

    CAS  PubMed  Google Scholar 

  • Croce, A.C., Spano, A., Locatelli, D., Barni, S., Sciola, L., and Bottiroli, G., 1999, Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol. 69:364–374.

    CAS  PubMed  Google Scholar 

  • DaCosta, R.S., Andersson, H., and Wilson, B.C., 2003, Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy, Photochem. Photobiol. 78:384–392.

    CAS  Google Scholar 

  • Daly, C., and McGrath, J.C., 2003, Fluorescent ligands, antibodies and preoteins for the study of receptors, Pharmacol. Ther. 100:101–118.

    CAS  Google Scholar 

  • De Clerck, L.S., Bridts, C.H., Mertens, A.M., Moens, M.M., and Stevens, W.J., 1994, Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function, J. Immunol. Methods 172:115–124.

    PubMed  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    CAS  PubMed  Google Scholar 

  • Derfus, A.M., Chan, W.C.W., and Bhatia, S.N., 2004, Probing the cytotoxicity of semiconductor quantum dots, Nano. Lett. 4:11–18.

    CAS  Google Scholar 

  • Diaz, G., Liu, S., Isola, R., Diana, A., and Falchi, A.M., 2003, Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes, Histochem. Cell Biol. 120:319–325.

    CAS  Google Scholar 

  • Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., and Fraser, S.E., 2001, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy, Biotechniques 31:1272–1278.

    CAS  PubMed  Google Scholar 

  • Dickinson, M.E., Simbuerger, E., Zimmermann, B., Waters, C.W., and Fraser, S.E., 2003, Multiphoton excitation spectra in biological samples, J. Biomed. Opt. 8:329–338.

    PubMed  Google Scholar 

  • Dittrich, P.S., and Schwille, P., 2001, Photobleaching and stabilization of fluorophores used for single molecule analysis with one- and two-photon excitation, Appl. Phys. B 73:829–837.

    CAS  Google Scholar 

  • Di Virgilio, F., Steinberg T.H., and Silverstein, S.C., 1990, Inhibition of fura-2 sequestration and secretion with organic anion transport blockers, Cell Calcium 11:57–62.

    PubMed  Google Scholar 

  • Doyle, K.P., Simon, R.P., Snyder, A., and Stenzel-Poore, M.P., 2003, Working with GFP in the brain. BioTechniques 34:492–494.

    CAS  PubMed  Google Scholar 

  • Dundr, M., McNally, J.G., Cohen, J., and Mistelli, T., 2002, Quantitation of GFP-fusion proteins in single living cells, J. Struct. Biol. 140:92–99.

    CAS  PubMed  Google Scholar 

  • Eggeling, C., Widengren, J., Rigler, R., and Seidel C.A.M., 1999, In: Applied Fluorescence in Chemistry, Biology and Medicine (W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, eds.), Springer-Verlag, Berlin, pp. 193–240.

    Google Scholar 

  • Eilers, J., and Konnerth, A., 2000, Dye loading with patch pipets, In: Imaging Neurons. A Laboratory Manual (R. Yuste, F. Lanni, and A. Konnerth, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 35.1–35.10.

    Google Scholar 

  • Endemann, G., Schechtman, D., and Mochly-Rosen, D., 2003, Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site, Anal. Biochem. 313:345–347.

    CAS  Google Scholar 

  • Farber, S.A., Pack, M., Ho, S.Y., Johnson, I.D., Wagner, D.S., Dosch, R., Mullins, M.C., Hendrickson, H.S., Hendrickson, E.K., and Halpern, M.E., 2001, Genetic analysis of digestive physiology using fluorescent phospholipid reporters, Science 292:1385–1388.

    CAS  PubMed  Google Scholar 

  • Farinas, J., and Verkman, A.S., 1999, Receptor-mediated targeting of fluorescent probes in living cells, J. Biol. Chem. 274:7603–7606.

    CAS  PubMed  Google Scholar 

  • Fink, C., Morgan, F., and Loew, L.M., 1998, Intracellular fluorescent probe concentrations by confocal microscopy, Biophys. J. 75:1648–1658.

    CAS  Google Scholar 

  • Fischer, P.M., Krausz, E., and Lane, D.P., 2001, Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation, Bioconj. Chem. 12:825–841.

    CAS  Google Scholar 

  • Fricker, M.D., and Meyer, A.J., 2001, Confocal imaging of metabolism in vivo: Pitfalls and possibilities, J. Exp. Bot. 52:631–640.

    CAS  PubMed  Google Scholar 

  • Gaigalas, A.K., Wang, L., and Vogt, R.F., 2002, Frequency-domain measurement of the photodegradation process of fluorescein, Photochem. Photobiol. 76:22–28.

    CAS  Google Scholar 

  • Gan, B.S., Krump, E., Shrode, L.D., and Grinstein, S., 1998, Loading pyranine via purinergic recepetors or hypotonic stress for measurement of cytosolic pH by imaging, Am. J. Physiol. 275: C1158–C1166.

    CAS  PubMed  Google Scholar 

  • Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yield of singlet oxygen production by xanthene derivatives, Photochem. Photobiol. 37:271–278.

    CAS  Google Scholar 

  • Gerhardt, G.A., and Palmer, M.R., 1987, Characterization of the techniques of pressure ejection and microiontophoresis using in vivo electrochemistry, J. Neurosci. Methods 22:147–159.

    CAS  PubMed  Google Scholar 

  • Good, M.J., Hage, W.J., Mummery, C.L., De Laat, S.W., and Boonstra, J., 1992, Localization and quantification of epidermal growth factor receptors on single cells by confocal laser scanning microscopy, J. Histochem. Cytochem. 40:1353–1361.

    CAS  PubMed  Google Scholar 

  • Greenbaum, L., Rothmann, C., Lavie, R., and Malik Z., 2000, Green fluorescent protein photobleaching: A model for protein damage by endogenous and exogenous singlet oxygen, Biol. Chem. 381:1251–1258.

    CAS  Google Scholar 

  • Grzelak, A., Rychlik, B., and Bartosz, G., 2001, Light-dependent generation of reactive oxygen species in cell culture media, Free Radic. Biol. Med. 30:1418–1425.

    CAS  Google Scholar 

  • Grutzendler, J., Tsai, J., and Gan, W.G., 2003, Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes, Methods 30:79–85.

    CAS  PubMed  Google Scholar 

  • Gunjan, A., Alexander, B.T., Sittman, D.B., and Brown, D.T., 1999, Effects of H1 histone variant overexpression on chromatin structure, J. Biol. Chem. 274:37950–37956.

    CAS  PubMed  Google Scholar 

  • Haas, K., Sin, W.-C., Javaherian, A., Li, Z., and Cline, H.T., 2001, Single-cell electroporation for gene transfer in vivo, Neuron 29:583–591.

    CAS  PubMed  Google Scholar 

  • Hara, M., Wang, X., Kawamura, T., Bindokas, V.P., Dizon, R.F, Alcoser, S.Y., Magnuson, M.A., and Bell, G.I., 2003, Transgenic mice with green fluorescent protein–labeled pancreatic b-cells, Am. J. Physiol. 284:E1177–E1183.

    Google Scholar 

  • Haralampus-Grynaviski, N.M., Lamb, L.E., Clancy, C.M., Skumatz, C., Burke, J.M., Sarna, T., and Simon, J.D., 2003, Spectroscopic and morphological studies of human retinal lipofuscin granules, Proc. Natl. Acad. Sci. USA 100:3179–3184.

    CAS  PubMed  Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S., 1997, Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA 94:2122–2127.

    CAS  PubMed  Google Scholar 

  • Hashimoto, K., Tatsumi, N., and Okada, K., 1989, Introduction of phalloidin labelled with fluorescein isothiocyanate into living polymorphonuclear leukocytes by electroporation, J. Biochem. Biophys. Methods 19:143–154.

    CAS  PubMed  Google Scholar 

  • Haugland, R.P., 2002, Handbook of Fluorescent Probes and Research Products, Ninth Edition, Molecular Probes, Inc., Eugene, Oregon.

    Google Scholar 

  • Helmchen, F., 2002, Miniaturization of fluorescence microscopes using fibre optics, Exp. Physiol. 87:737–745.

    Google Scholar 

  • Hermanson, G.P., 1996, Bioconjugate Techniques, Academic Press, San Diego, California.

    Google Scholar 

  • Hollo, Z., Homolya, L., Davis, C.W., and Sarkadi, B., 1994, Calcein accumulation as a fluorometric functional assay of the multidrug transporter, Biochim. Biophys. Acta 1191:384–388.

    CAS  PubMed  Google Scholar 

  • Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M., 2003, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21:47–52.

    CAS  Google Scholar 

  • Jales-Erijman, E.A., and Jovin, T.M., 2003, FRET imaging, Nat. Biotechnol. 21:1387–1395.

    Google Scholar 

  • Kanofsky, J.R., and Sima P.D., 2000, Structural and environmental requirements for quenching of singlet oxygen by cyanine dyes, Photochem. Photobiol. 71:361–368.

    CAS  Google Scholar 

  • Katz, B.Z., Krylov, D., Aota, S.I., Olive, M., Vinson, C., and Yamada, K.M., 1998, Green fluorescent protein labeling of cytoskeletal structures —Novel targeting approach based on leucine zippers, BioTechniques 25: 298–304.

    CAS  PubMed  Google Scholar 

  • Knight, M.M., Roberts, S.R., Lee, D.A., and Bader, D.L., 2003, Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death, Am. J. Physiol. 284:C1083–C1089.

    CAS  Google Scholar 

  • Koester, H.J., Baur, D., Uhl, R., and Hell, S.W., 1999, Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage, Biophys. J. 77:2226–2236.

    CAS  Google Scholar 

  • Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., and Webb, W.W., 2003, Water soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 300:1434–1436.

    CAS  PubMed  Google Scholar 

  • Lee, C., Wu, S.S., and Chen, L.B., 1995, Photosensitization by 3,3¢- dihexyloxacarbocyanine iodide: Specific disruption of microtubules and inactivation of organelle motility, Cancer Res. 55:2063–2069.

    CAS  Google Scholar 

  • Lemasters, J.J., Trollinger, D.R., Qian, T., Cascio, W.E., and Ohata, H., 1999, Confocal imaging of Ca2+, pH, electrical potential and membrane permeability in single living cells, Methods Enzymol. 302:341–358.

    CAS  Google Scholar 

  • Lim, M.L., Lum, M.G., Hansen, T.M., Roucou, X., and Nagley, P., 2002, On the release of cytochrome c from mitochondria during cell death signaling, J. Biomed. Sci. 9:488–506.

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells, Science 300:87–91.

    CAS  PubMed  Google Scholar 

  • Loetchutinat, C., Saengkhae, C., Marbeuf-Gueye, C., and Garnier-Suillerot, A., 2003, New insights into the P-glycoprotein-mediated effluxes of rhodamines, Eur. J. Biochem. 270:476–485.

    CAS  PubMed  Google Scholar 

  • Lombry, C., Bosquillon, C., Preat, V., and Vanbever, R., 2002, Confocal imaging of rat lungs following intratracheal delivery of dry powders or solutions of fluorescent probes, J. Controlled Release 83:331–341.

    CAS  Google Scholar 

  • Lu, J., and Zenobi, R., 2000, In-situ monitoring of protein labeling reactions by matrix-assisted laser desorption/ionization mass spectrometry, Fresnius J. Anal. Chem. 366:3–9.

    CAS  Google Scholar 

  • Manders, E.M., Kimura, H., and Cook, P.R., 1999, Direct imaging of DNA in living cells reveals the dynamics of chromosome formation, J. Cell Biol. 144:813–821.

    CAS  Google Scholar 

  • Manders, E., Van Oven, C., and Hoebe, R., 2004, Phototoxicity in live-cell imaging and an effective way to reduce it: Controlled light exposure microscopy (CLEM), In: Abstracts of Focus on Microscopy 2004 Meeting.

    Google Scholar 

  • Marrero, M.B., Schieffer, B., Paxton, W.G., Schieffer, E., and Bernstein, K.E., 1995, Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-g1 in rat aortic smooth muscle cells, J. Biol. Chem. 270:15734–15738.

    CAS  PubMed  Google Scholar 

  • Martin, C., Walker, J., Rothnie, A., and Callaghan, R., 2003, The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models, Br. J. Cancer 89:1581–1589.

    CAS  PubMed  Google Scholar 

  • Mattheakis, L.C., Dias, J.M., Choi, Y.J., Gong, J., Bruchez, M.P., Liu, J., and Wang, E., 2004, Optical coding of mammalian cells using semiconductor quantum dots, Anal. Biochem. 327:200–208.

    CAS  Google Scholar 

  • Matz M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A., 1999, Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol. 17:969–973.

    CAS  Google Scholar 

  • Mercola, D.A., Morris, J.W.S., and Arquilla, E.R., 1972, Use of resonance interaction in the study of the chain folding of insulin in solution, Biochemistry 11:3860–3874.

    CAS  PubMed  Google Scholar 

  • Meyers, J.R., MacDonald, R.B., Duggan, A., Lenzi, D., Standaert, D.G., Corwin, J.T., and Corey, D.P., 2003, Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels, J. Neurosci. 23:4054–4065.

    CAS  Google Scholar 

  • Mook, O.R., Van Overbeek C., Ackema, E.G., Van Maldegem, F., and Frederiks, W.M., 2003, In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin, J. Histochem. Cytochem. 51:821–829.

    CAS  PubMed  Google Scholar 

  • Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., and Waggoner, A.S., 1993, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjug. Chem. 4:105–111.

    CAS  Google Scholar 

  • Nemetz, C., Reichhuber, R., Schweizer, R., Hloch, P., and Watzele, M., 2001, Reliable quantification of in vitro synthesized green fluorescent protein: Comparison of fluorescence activity and total protein levels, Electrophoresis 22:966–969.

    CAS  PubMed  Google Scholar 

  • Nicholls, D.G., and Ward, M.W., 2000, Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts, Trends Neurosci. 23:166–174.

    CAS  PubMed  Google Scholar 

  • O’Brien, J.A, Holt, M., Whiteside, G., Lummis, S.C., and Hastings, M.H., 2001, Improvements to the hand-held Gene Gun: Improvements for in vitro biolistic transfection of organotypic neuronal tissue, J. Neurosci. Methods 112:57–64.

    PubMed  Google Scholar 

  • Oh, D.J., Lee, G.M., Francis, K., and Palsson, B.O., 1999, Phototoxicity of the fluorescent membrane dyes PKH2 and PKH26 on the human hematopoietic KG1a progenitor cell line, Cytometry 36:312–318.

    CAS  PubMed  Google Scholar 

  • Ouedraogo, G.D., and Redmond, R.W., 2003, Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization, Photochem. Photobiol. 77:192–203.

    CAS  Google Scholar 

  • Pagano, R.E., Watanabe, R., Wheatley, C., and Dominguez, M., 2000, Applications of BOPIDY-sphingolipid analogs to study lipid traffic and metabolism in cells, Methods Enzymol. 312:523–534.

    CAS  PubMed  Google Scholar 

  • Panchuk-Voloshina, N., Haugland, R.P., Bishop-Stewart, J., Bhalgat, M.K., Millard, P.J., Mao, F., Leung, W.-Y., and Haugland, R.P., 1999, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem. 47:1179–1188.

    CAS  PubMed  Google Scholar 

  • Parish, C.R., 1999, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunol. Cell Biol. 77:499–508.

    CAS  Google Scholar 

  • Passamonti, S., and Sottocasa, G., 1988, The quinoid structure is the molecular requirement for recognition of phthaleins by the organic anion carrier at the sinusoidal plasma membrane level in the liver, Biochim. Biophys. Acta 943:119–125.

    CAS  PubMed  Google Scholar 

  • Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W., 1997, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophys. J. 73:2782–2790.

    CAS  Google Scholar 

  • Patterson, G.H., and Piston, D.W., 2000, Photobleaching in two-photon excitation microscopy, Biophys. J. 78:2159–2162.

    CAS  Google Scholar 

  • Potocky, T.B., Menon, A.K., and Gellman, S.H., 2003, Cytoplasmic and nuclear delivery of a TAT-derived peptide and a b-peptide after endocytic uptake into HeLa cells, J. Biol. Chem. 278:50188–50194.

    CAS  PubMed  Google Scholar 

  • Pu, R., Wozniak, M., and Robinson, K.R., 2000, Cortical actin filaments form rapidly during photopolarization and are required for the development of calcium gradients in Pelvetia compressa zygotes, Dev. Biol. 222:440–449.

    CAS  Google Scholar 

  • Ramjeesingh, M., Zywulko, M., Rothstein, A., Whyte, R., and Shami, E.Y., 1990, Antigen protection of monoclonal antibodies undergoing labeling, J. Immunol. Methods 133:159–167.

    CAS  PubMed  Google Scholar 

  • Rocheleau, J.V., Head, W.S., and Piston, D.W., 2004, Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response, J. Biol. Chem. 279: 31780–31787

    CAS  PubMed  Google Scholar 

  • Roederer, M., and Murphy, R.F., 1986, Cell-by-cell autofluorescence correction for low signal-to-noise systems: Application to epidermal growth factor endocytosis by 3T3 fibroblasts, Cytometry 7:558–565.

    CAS  PubMed  Google Scholar 

  • Rose, C.R., Kovalchuk, Y., Eilers, J., and Konnerth, A., 1999, Two-photon Na+ imaging in spines and fine dendrites of central neurons, Pflügers Arch. 439:201–207.

    CAS  PubMed  Google Scholar 

  • Rottenberg, H., and Wu, S., 1998, Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells, Biochim. Biophys. Acta 1404:393–404.

    CAS  PubMed  Google Scholar 

  • Rubart, M., Wang, E., Dunn, K.W., and Field, L.J., 2003, Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts, Am. J. Physiol. Cell Physiol. 284:C1654–C1668.

    CAS  PubMed  Google Scholar 

  • Ruthazer, E.S., and Cline, H.T., 2002, Multiphoton imaging of neurons in living tissue: Acquisition and analysis of time-lapse morphological data, Real-Time Imaging 8:175–188.

    Google Scholar 

  • Schafer, F.Q., and Buettner, G.R., 1999, Singlet oxygen toxicity is cell linedependent: a study of lipid peroxidation in nine leukemia cell lines, Photochem. Photobiol. 70:858–867.

    CAS  Google Scholar 

  • Scorrano, L., Petronilli, V., Colonna, R., Di Lisa, F., and Bernardi, P., 1999, Chloromethyltetramethylrosamine (Mitotracker Orange) induces the mitochondrial permeability transition and inhibits respiratory complex I, J. Biol. Chem. 274:24657–24663.

    CAS  PubMed  Google Scholar 

  • Song, L., Hennink, E.J., Young, I.T., and Tanke, H.J., 1995, Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy, Biophys. J. 68:2588–2600.

    CAS  Google Scholar 

  • Song, L., Varma, C.A., Verhoeven, J.W., and Tanke, H.J., 1996, Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy, Biophys. J. 70:2959–2968.

    CAS  Google Scholar 

  • Song, L., van Gijlswijk, R.P., Young, I.T., and Tanke, H.J., 1997, Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy, Cytometry 27:213–223.

    CAS  PubMed  Google Scholar 

  • Stephens, D.G., and Pepperkok, R., 2001, The many ways to cross the plasma membrane, Proc. Natl. Acad. Sci. USA 98:4295–4298.

    CAS  PubMed  Google Scholar 

  • Stoien, J.D., and Wang, R.J., 1974, Effect of near-ultraviolet and visible light on mammalian cells in culture II. Formation of toxic photoproducts in tissue culture medium by blacklight, Proc. Natl. Acad. Sci. USA 71:3961–3965.

    CAS  Google Scholar 

  • Storms, M.M.H., Van der Schoot, C., Prins, M., Kormelink, R., Van Lent, J.W.M., and Goldbach, R.W., 1998, A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins, Plant J. 13:131–140.

    CAS  Google Scholar 

  • Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A., 2003, In vivo two-photon calcium imaging of neuronal networks, Proc. Natl. Acad. Sci. USA 100:7319–7324.

    CAS  PubMed  Google Scholar 

  • Stracke, F., Heupel, M., and Thiel, E., 1999, Singlet molecular oxygen photosensitized by rhodamine dyes: Correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol. A 126:51–58.

    Google Scholar 

  • Stracke, F., Heupel, M., and Thiel, E., 1999, Singlet molecular oxygen photosensitized by rhodamine dyes: Correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol. A 126:51–58.

    CAS  Google Scholar 

  • Sullivan, K.F., and Kay, S.A., eds., 1999, Green Fluorescent Proteins, Academic Press, San Diego, California.

    Google Scholar 

  • Takahashi, N., Nemoto, T., Kimura, R., Tachikawa, A., Miwa, A., Okado, H., Miyashita, Y., Iino, M., Kadowaki, T., and Kasai, H., 2002, Two-photon excitation imaging of pancreatic islets with various fluorescent probes, Diabetes 51:S25–S28.

    CAS  PubMed  Google Scholar 

  • Tanhuanpaa, K., and Somerharju, P., 1999, Gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies, J. Biol. Chem. 274:35359–35366.

    CAS  PubMed  Google Scholar 

  • Tirlapur, U.K., Konig, K., Peuckert, C., Krieg, R., and Halbhuber, K.J., 2001, Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death, Exp. Cell Res. 263:88–97.

    CAS  Google Scholar 

  • Tooley, A.J., Cai, Y.A., and Glazer, A.N., 2001, Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host, Proc. Natl. Acad. Sci. USA 98:10560–10565.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 1998, The green fluorescent protein, Ann. Rev. Biochem. 67:509–544.

    CAS  PubMed  Google Scholar 

  • Unkila, M., McColl, K.S., Thomenius, M.J., Heiskanen, K., and Distelhorst, C.W., 2001, Unreliability of the cytochrome c-enhanced green fluorescent fusion protein as a marker of cytochrome c release in cells that overexpress Bcl-2, J. Biol. Chem. 276:39132–39137.

    CAS  PubMed  Google Scholar 

  • Vigers, G.P., Coue, M., and McIntosh, J.R., 1988, Fluorescent microtubules break up under illumination, J. Cell Biol. 107:1011–1024.

    CAS  Google Scholar 

  • Wadkins, R.M., and Houghton, P.J., 1995, Kinetics of transport of dialkyloxacarbocyanines in multidrug-resistant cell lines overexpressing Pglycoprotein: Interrelationship of dye alkyl chain length, cellular flux, and drug resistance, Biochemistry 34:3858–3872.

    CAS  PubMed  Google Scholar 

  • Waizenegger, T., Fischer, R., and Brock, R., 2002, Intracellular concentration measurement in adherent cells: Acomparison of import efficiencies of cellpermeable peptides, Biol. Chem. 383:291–299.

    CAS  Google Scholar 

  • Walev, I., Bhakdi, S.C., Hofmann, F., Djonder, N., Valeva, A., Aktories, K., and Bhakdi, S., 2001, Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin O, Proc. Natl. Acad. Sci. USA 98:3185–3190.

    CAS  PubMed  Google Scholar 

  • Wang, G., Achim, C.L., Hamilton, R.L., Wiley, C.A., and Soontornniyomkij, V., 1999, Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy, Methods 18:459–464.

    CAS  PubMed  Google Scholar 

  • Watson, A., Wu, X., and Bruchez, M., 2003, Lighting up cells with quantum dots, BioTechniques 34:296–303.

    CAS  PubMed  Google Scholar 

  • Wendland, M., and Bumann, D., 2002, Optimization of GFP levels for analyzing Salmonella gene expression during an infection, FEBS Lett. 521:105–108.

    CAS  PubMed  Google Scholar 

  • White, S.M, Constantin, P.E., and Claycomb, W.C., 2004, Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function, Am. J. Physiol. 286:H823–H829.

    CAS  Google Scholar 

  • Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P., 2003, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 21:41–46.

    CAS  Google Scholar 

  • Xu, C., and Webb, W.W., 1996, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B 13:481–491.

    CAS  Google Scholar 

  • Xu, C., Zipfel, W., Shear, J.B., Williams, R.M., and Webb, W.W., 1996, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA 93:10763–10768.

    CAS  PubMed  Google Scholar 

  • Yasuda, K., Momose, T., and Takahashi, Y., 2000, Applications of microelectroporation for studies of chick embryogenesis, Dev. Growth Differ. 42:203–206.

    CAS  Google Scholar 

  • Zipfel, W., Williams, R.M., and Webb, W.W., 2003a, Nonlinear magic: Multiphoton microscopy in the biosciences, Nat. Biotechol. 21:1369–1377.

    CAS  Google Scholar 

  • Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T., and Webb, W.W., 2003b, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proc. Natl. Acad. Sci. USA 100:7075–7080.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y., 2002, Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol. 3:906–918.

    CAS  PubMed  Google Scholar 

  • Zhang, X., and Kiechle, F.L., 2003, Hoechst 33342 alters luciferase gene expression in transfected BC3H-1 myocytes, Arch. Pathol. Lab. Med. 127:1124–1132.

    CAS  PubMed  Google Scholar 

  • Zhao, M., Hollingworth, S., and Baylor, S.M., 1997, AM-loading of fluorescent Ca2+ indicators into intact fibers of frog muscle, Biophys. J. 72:2736–2747.

    CAS  Google Scholar 

  • Siegel, R.M., Chan, F.K., Zacharias, D.A., Swofford, R., Holmes, K.L., Tsien, R.Y., and Lenardo, M.J., 2000, Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein, Science Signal Transduction Knowledge Environment, available at http://stke.sciencemag.org/cgi/content/full/ OC_sigtrans;2000/38/pl1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, I.D. (2006). Practical Considerations in the Selection and Application of Fluorescent Probes. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_17

Download citation

Publish with us

Policies and ethics