Skip to main content

Gene Expressions of Taurine Transporter and Taurine Biosynthetic Enzyme during Mouse and Chicken Embryonic Development

  • Conference paper
Taurine 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 583))

5. Conclusions

Taurine (2-aminoethanesulfonic acid) is one of the major intracellular β-amino acids in mammals and is required for a number of biological processes including membrane stabilization, osmoregulation, modulation of calcium flux, antioxidation, neuromodulation, cell proliferation, and immune systems. As taurine is essential to the fetus and newborn for their development, the transfer of taurine into fetus is important during embryonic development. However, the protein expression pattern of taurine biosynthesis and transportation in the early embryonic development stage is still unknown. Thus, we have investigated the gene expression of TauT and CSD, which is one of the rate-limiting enzymes of taurine biosynthesis, using reverse transcriptase-polymerase chain reaction (RT-PCR) in mouse and chicken embryos to identify the expression phase during embryonic development. Murine embryos aged 4.5 days expressed both mRNAs of TauT and CSD. To overcome difficulties in the analyses of very immature embryos, the chicken embryo was employed instead of murine one. The chicken embryo aged 3 days produced TauT mRNA in the heart, brain and eye. In the analyses on chicken whole embryos, mRNAs of CSD and TauT began to appear at 12 and 48 h, respectively. These data show that TauT and CSD mRNAs are expressed in early stage of embryonic development and taurine synthetic enzyme is expressed earlier than that of the TauT, indicating important roles of taurine in the developing fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Augustin, R., Pocar, P., Navarrete-Santos, A., Wrenzycki, C., Gandolfi, F., Niemann, H., and Fischer, B., 2001, Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos, Mol. Rep. Dev. 60:370.

    Article  CAS  Google Scholar 

  • Benson, J. D., and Masor, R. L., 1994, Infant formula development: past, present and future, Endocr. Regul. 28:9.

    PubMed  CAS  Google Scholar 

  • Chen, X. C., Pan, Z. L., Liu, D. S., Han, X., 1998, Effect of taurine on human fetal neuron cells: proliferation and differentiation, Adv. Exp. Med. Biol. 442:397.

    PubMed  CAS  Google Scholar 

  • Chesney, R. W., Gusowski, N., and Freidman, A. L., 1983, Renal adaptation to altered amino acid intake occurs at the luminal brush border membrane, Kidney Int. 24:588.

    PubMed  CAS  Google Scholar 

  • Chesney, R. W., Gusowski, N., and Dabbagh, S., 1985, Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids, J. Clin. Invest. 76:2213.

    Article  PubMed  CAS  Google Scholar 

  • Dascal, N., 1987, The use of Xenopus oocytes for the study of ion channels, CRC Crit. Rev. Biochem. 22:317.

    PubMed  CAS  Google Scholar 

  • De la Rosa, J. and Stipanuk, M. H., 1985, Evidence for a rate-limiting role of cysteine sulfinate decarboxylase activity in taurine biosynthesis in vivo, Comp. Biochem. Physiol. B 81:565.

    Article  PubMed  Google Scholar 

  • Domanska-Janik, K. and Zablocka, B., 1993, Protein kinase C as an early and sensitive marker of ischemiainduced progressive neuronal damage in gerbil hippocampus, Mol. Chem. Neuropathol. 20:111.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, K., Hirai, Y., Yoshida, H., Hakajima, T., and Usii, T., 1982, Free amino acid content of lymphocytes and granulocytes compared, Clin. Chem. 28:1758.

    PubMed  CAS  Google Scholar 

  • Ghisolfi, J., 1987, Taurine and the premature, Biol. Neonate 52:78.

    PubMed  CAS  Google Scholar 

  • Green, T., Fellman, J. H., Eicher, A. L., and Pratt, K. J., 1991, Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils, Biochim. Biophys. Acta 1073:91.

    PubMed  CAS  Google Scholar 

  • Han, W., Budreau, A. M., and Chesney, R. W., 1998, Molecular cloning and functional expression of an LLCPK1 cell taurine transporter that is adaptively regulated by taurine, Adv. Exp. Med. Biol. 442:261.

    PubMed  CAS  Google Scholar 

  • Han, X., Budreau, A. M., and Chesney, R. W., 1999, Ser-322 is a critical site for PKC regulation of the MDCK cell taurine transporter (pNCT), J. Am. Soc. Nephrol. 10:1874.

    PubMed  CAS  Google Scholar 

  • Huxtable, R. J., 1992, Physiological actions of taurine, Physiol. Rev. 72:101

    PubMed  CAS  Google Scholar 

  • Jacobsen, J. G. and Smith, L. H. Jr., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424.

    PubMed  CAS  Google Scholar 

  • Jhiang, S. M., Fithian, L., Smanik, P., McGill, J., Tong, Q., and Mazzaferri, E. L., 1993, Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells, FEBS Lett. 318:139.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, S. M. and Stipanuk, M. H., 1984, Changes in cysteine dioxygenase and cysteinesulfinate decarboxylase activities and taurine levels in tissues of pregnant or lactating rat dams and their fetuses or pups, Biol. Neonate 46:237.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, Y. M., Zhou, B., Cosco, D., and Gitschier, J., 2001, The copper transporter CTR1 provide an essential function in mammalian embryonic development, Proc. Natl. Acad. Sci. USA 98:6836.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q. R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N., 1992, Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain, Proc. Natl. Acad. Sci. USA 89:12145.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D. D., Hirsch, J. R., Sarkar, H. K., and Wright, E. M., 1996, Regulation of the mouse retinal taurine transporter (TAUT) by protein kinase in Xenopus oocytes, FEBS Lett. 392:250.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, Y., Liou, G. I., and Sprinkle, T. J., 1995, Isolation of a cDNA encoding a taurine transporter in the human retinal pigment epithelium, Curr. Eye Res. 15:345.

    Google Scholar 

  • Park, E., Jia, J., Quinn, M. R., and Schuller-Levis, G., 2002, Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes, Clin. Immunol. 102:179.

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy, S., Leibach, F. H., Mahesh, V. B., Han, H., Yang-Feng, T., 1994, Blakely R. D. and Ganapathy V. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta, Biochem. J. 300:893.

    PubMed  CAS  Google Scholar 

  • Sapronov, N. S., Khnychenko, L. K., and Polevshchikov, A. V. Effects of new taurine derivatives on primary immune response in rats, Bull. Exp. Biol. Med. 131:142.

    Google Scholar 

  • Smith, K. E., Borden, L. A., Wang, C. D., Hartig, P. R., Branchek, T. A., and Weinshank, R. L., 1992, Cloning and expression of a high affinity taurine transporter from rat brain, Mol. Pharmacol. 42:563.

    PubMed  CAS  Google Scholar 

  • Takeuchi, K., Toyohara, H., Sakaguchi, M., 2000, A hyperosmotic stress-induced mRNA of carp cell encodes Na+-and Cl-dependent high taurine transporter, Biochim. Biophys. Acta 1464:219.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, S., Kwon, H. M., Yamauchi, A., Preston, A. S., Marumo, F., and Handler, J. S., 1992, Molecular cloning of the cDNA for an MDCK cell Na+-and Cl-dependent taurine transporter that is regulated by hypertonicity, Proc. Natl. Acad. Sci. USA 89:8230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kim, H.W., Yoon, S.H., Park, T., Kim, B.K., Park, K.K., Lee, D.H. (2006). Gene Expressions of Taurine Transporter and Taurine Biosynthetic Enzyme during Mouse and Chicken Embryonic Development. In: Oja, S.S., Saransaari, P. (eds) Taurine 6. Advances in Experimental Medicine and Biology, vol 583. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33504-9_7

Download citation

Publish with us

Policies and ethics