Skip to main content

Sustainable Polyurethanes: Chemical Recycling to Get It

  • Chapter
  • First Online:
Environment, Energy and Climate Change I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 32))

Abstract

Nowadays polyurethanes are one of the most important classes of polymers in the chemical market due to the huge diversity of their applications. Polyurethane is placed the sixth of the most used plastics in the world ranking. As a consequence of their commercial success, a great quantity of wastes are generated, not only post-consumer products but also scrap from slabstock manufacturing. In the past, landfilling was the solution to the problem, but, nowadays, the new environmental laws do essential to develop environmental sustainable recycling processes. On the one hand, there are physical methods that do not modify the internal structure of the polyurethane and only convert mechanically the wastes in flakes, granules or powder to be used as fillers for new PUs or to be rebounded. However, these physical processes can be only applied with thermoplastic polyurethane, while the majority of polyurethane specialties are thermostable polymers. Therefore, chemical processes are mainly used to recycle polyurethane wastes. These chemical recycling processes allow to obtain basic hydrocarboned units known as monomers that are able to be used as synthesis materials in chemical and petrochemical industry. This way, it is possible to achieve high value-added products that can be used in the synthesis of new polyurethane products. Thus, the main aim of this chapter is to describe the presently known technologies for the chemical recycling of polyurethane wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behrendt G, Naber BW (2009) The recycling of polyurethanes (review). J Univ Chem Technol Metallurg 44(1):3–23

    CAS  Google Scholar 

  2. Herlinger H (1970) Struktur und Reaktivit der Isocyante (Structure and reactivity of isocyanate). Stuttgart

    Google Scholar 

  3. Woods G (1982) Flexible polyurethane foams: chemistry and technology. Applied Science Publishers, Barking, Essex

    Google Scholar 

  4. Wu J, Wang Y, Wan Y, Lei H, Yu F, Liu Y, Chen P, Yang L, Ruan R (2009) Processing and properties of rigid polyurethane foams based on bio-oils from microwave-assisted pyrolysis of corn stover. Int J Agric Biol Eng 2(1):40–50

    CAS  Google Scholar 

  5. Ullmann’s Encyclopedia (2005) Polyurethanes. Wiley, Weinheim. doi:10.1002/14356007. a21_665.pub2

    Google Scholar 

  6. Singh SN (2001) Blowing agents for polyurethane foams, vol 12, Number 10. Rapra Review Reports. Report 142

    Google Scholar 

  7. Zevenhoven R (2004) Treatment and disposal of polyurethane wastes: options for recovery and recycling. Energy Engineering and Environmental Protection Publications Espoo 2004. Report TKK-ENY-19

    Google Scholar 

  8. Oertel G (1985) Polyurethane handbook. Hanser Publishers, Munich

    Google Scholar 

  9. Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846

    Article  CAS  Google Scholar 

  10. O’Connor JM (2012) Polyurethane coatings and elastomers. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia

    Google Scholar 

  11. De SK, White JR (eds) (2001) Rubber technologist’s handbook. Rapra Technology, Shawbury

    Google Scholar 

  12. O’Connor JM (2012) Polyurethane sealants, adhesives and binders. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia

    Google Scholar 

  13. DIN 16920 (1981) standard published by Deutsches Institut Fur Normung E.V. (German National Standard)

    Google Scholar 

  14. Bastian C (1994) A European strategy for recycling. Paper 50 presented at UTECH 94 Conf. The Hague

    Google Scholar 

  15. ASTM D5033-00 Standard Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007)

    Google Scholar 

  16. ISOPA (2001) Recycling and recovering polyurethanes: rebonded flexible foam. Brussels

    Google Scholar 

  17. ISOPA (2001) Recycling and recovering polyurethanes: regrinding/powdering. Brussels

    Google Scholar 

  18. ISOPA (2001) Recycling and recovering polyurethanes: compression moulding. Brussels

    Google Scholar 

  19. Hicks DA, Krommenhoek M, Soderberg DJ, Hooper JFG (1994) Polyurethanes recycling and waste management. Paper 51 presented at UTECH 94 Conf. The Hague

    Google Scholar 

  20. Campbell GA, Meluch WC (1976) Polyurethane foam recycling – superheated steam hydrolysis. Environ Sci Tech 10(2):182–185

    Article  CAS  Google Scholar 

  21. Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stabil 76(2):179–184

    Article  CAS  Google Scholar 

  22. Gerlock JL, Braslaw J, Mahoney LR, Ferris FC (1980) Reaction of polyurethane foam with dry steam: kinetics and mechanism of reactions. J Polym Sci Pol Chem 18(2):541–557

    Article  CAS  Google Scholar 

  23. Matuszak ML, Frisch KC, Reegen SL (1973) Hydrolysis of linear polyurethanes and model monocarbamates. J Polym Sci Pol Chem 11(7):1683–1690

    Article  CAS  Google Scholar 

  24. Anon (1976) Recovery of expanded polyurethanes by steam hydrolysis. Mater Plast Elastomeri 3:202–205

    Google Scholar 

  25. Grigat E (1978) Hydrolysis of plastics wastes. Kunstst Ger Plast 68(5):12–13

    Google Scholar 

  26. Shi Y, Zhan X, Zhang Q, Chen F (2009) Interfacial hydrolysis of isocyanate in monomer miniemulsion. Chem React Eng Technol 25:88

    Google Scholar 

  27. Gerlock J, Braslaw J, Zimbo M (1984) Polyurethane waste recycling 1. Glycolysis and hydroglycolysis of water-blown foams. Ind Eng Chem Proc Des Dev 23(3):545–552

    Article  CAS  Google Scholar 

  28. Nikje MMA, Nikrah M, Mohammadi FHA (2008) Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. J Cell Plast 44(5):367–380

    Article  CAS  Google Scholar 

  29. Nikje MMA, Mohammadi FHA (2009) Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microwave radiation. Polim Polym 54(7–8):541–545

    Google Scholar 

  30. Braslaw J, Gerlock JL (1984) Polyurethane waste recycling 2. Polyol recovery and purification. Ind Eng Chem Proc Des Dev 23(3):552–557

    Article  CAS  Google Scholar 

  31. Weigand E, Raβhofer W (1999) Present state of polyurethane recycling in Europe. In: Advances in Plastic Recycling, vol 1: recycling of polyurethanes. Technomic Publishing CO, Lancaster

    Google Scholar 

  32. Wu CH, Chang CY, Cheng CH, Huang HC (2003) Glycolysis of waste flexible polyurethane foam. Polym Degrad Stabil 80(1):103–111

    Article  CAS  Google Scholar 

  33. Bauer G (1996) Recycling of polyurethanes. In: Weigand E (ed) Recycling and recovery of plastics. Hanser Publishers, München, pp 518–537

    Google Scholar 

  34. Borda J, Päsztor G, Zsuga M (2000) Glycolysis of polyurethane foams and elastomers. Polym Degrad Stabil 68(3):419–422

    Article  CAS  Google Scholar 

  35. Simioni F, Modesti M, Rienzi SA (1987) Polyol recovery from elastomer polyurethane waste. Cell Polym 6(6):27–41

    CAS  Google Scholar 

  36. Simioni F, Modesti M (1991) Controlled degradation of polyurethane for recycling. Mater Sci Eng 2:127–144

    CAS  Google Scholar 

  37. Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts. Polym Degrad Stabil 91:894–901

    Article  CAS  Google Scholar 

  38. Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stabil 94(4):533–539

    Article  CAS  Google Scholar 

  39. Molero C, de Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manage 11(2):130–132

    Article  CAS  Google Scholar 

  40. Simón D, García MT, de Lucas A, Borreguero AM, Rodríguez JF (2013) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: study on the influence of reaction parameters. Polym Degrad Stabil 98(1):144–149

    Article  Google Scholar 

  41. Modesti M (1996) Recycling of polyurethane polymers. Advances in urethane science and technology, vol 13. Technomic Publishing CO., Lancaster

    Google Scholar 

  42. Ullmann’s Encyclopedia of Industrial Chemistry (2003). 6th edition. Wiley-VCH, Weinheim

    Google Scholar 

  43. Borda J, Rácz A, Zsuga M (2002) Recycled polyurethane elastomers: a universal adhesive. J Adhes Sci and Technol 16(9):1225–1234

    Article  CAS  Google Scholar 

  44. Wang X, Chen H, Chen C, Li H (2011) Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fiber Polym 12(7):857–863

    Article  Google Scholar 

  45. Datta J, Haponiuk JT (2008) Advanced coating of interior of tanks for rising environmental safety - novel applications of polyurethanes. Pol Marit Res Special Issue 2008:8–13

    Google Scholar 

  46. Simioni F, Bisello S, Tavan M (1983) Polyol recovery from rigid polyurethane waste. Cell Polym 2(4):281–293

    CAS  Google Scholar 

  47. Xue S, He F, Omoto M, Hidai T, Imai Y (1993) General purpose adhesives prepared from chemically decomposed waste rigid polyurethane foams. Kobunshi Ronbunshu 50(11):847–853

    Article  CAS  Google Scholar 

  48. Morooka H, Nakakawaji T, Okamoto S, Araki K, Yamada E (2005) Chemical recycling of rigid polyurethane foam for refrigerators. Polym Prepr 54(1):1951

    Google Scholar 

  49. Murai M, Sanou M, Fujimoto T, Baba F (2003) Glycolysis of rigid polyurethane foam under various reaction conditions. J Cell Plast 39(1):15–27

    Article  CAS  Google Scholar 

  50. Nikje MMA, Nikrah M (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci Pure 44(6):613–617

    Article  Google Scholar 

  51. Modesti M, Simioni F, Munari R, Baldoin N (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React Funct Polym 26:157–165

    Article  CAS  Google Scholar 

  52. Nikje MMA, Nikrah M, Haghshenas M (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull 59:91–104

    Article  Google Scholar 

  53. Scheirs J (ed) (1998) Polymer recycling. Wiley, UK, pp 339–377

    Google Scholar 

  54. Nikje MMA, Garmarudi AB (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J 19(4):287–295

    CAS  Google Scholar 

  55. Nikje MMA, Mohammadi FHA (2010) Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol 49:818–821

    Article  CAS  Google Scholar 

  56. Datta J, Rohn M (2007) Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim 88(2):437–440

    Article  CAS  Google Scholar 

  57. Datta J (2012) Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim 109:517–520

    Article  CAS  Google Scholar 

  58. Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: glycol influence. Polym Degrad Stabil 91(2):221–228

    Article  CAS  Google Scholar 

  59. Molero C, de Lucas A, Rodríguez JF (2008) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: study on the influence of reaction parameters. Polym Degrad Stabil 93(2):353–361

    Article  CAS  Google Scholar 

  60. Molero C, de Lucas A, Rodríguez JF (2006) Purification by liquid extraction of recovered polyols. Solv Extr Ion Exch 24(5):719–730

    Article  CAS  Google Scholar 

  61. Molero C, de Lucas A, Romero F, Rodríguez JF (2008) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J Appl Polym Sci 109(1):617–626

    Article  CAS  Google Scholar 

  62. Simón D, Borreguero AM, de Lucas A, Molero C, Rodríguez JF (2013) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manage. doi:10.1007/s10163-013-0205-y

    Google Scholar 

  63. Sheratte MB (1978) Process for converting the decomposition products of polyurethane and novel compositions thereby obtained. US Pat 4,110,266

    Google Scholar 

  64. Higashi F, Taguchi Y, Kokubo N, Ohta H (1981) Effect of initiation condition on the direct polycondensation reaction using triphenyl phosphite and pyridine. J Polym Sci Pol Chem 19(11):2745–2750

    Article  CAS  Google Scholar 

  65. Xue S, Omoto M, Hidai T, Imai Y (1995) Preparation of epoxy hardeners from waste rigid polyurethane foam and their applications. J Appl Polym Sci 56(2):127–134

    Article  CAS  Google Scholar 

  66. Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51(4):675–682

    Article  CAS  Google Scholar 

  67. Chuayjuljit S, Norakankorn C, Pimpan V (2002) Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. JOM 12(1):19–22

    CAS  Google Scholar 

  68. Van Der Wal HR (1994) New chemical recycling process for polyurethane. J Reinf Plast Compos 51:87–96

    Google Scholar 

  69. Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes: degradation of flexible polyester polyurethane foam by phosphonic acid dialkyl esters. J Appl Polym Sci 78(14):2565–2573

    Article  CAS  Google Scholar 

  70. Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of flexible polyether foam by dimethyl phosphonate. Polym Degrad Stabil 67:397–405

    Article  CAS  Google Scholar 

  71. Troev K, Atanasov VI, Tsevi R, Grancharov G, Tsekova A (2000) Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate. Polym Degrad Stabil 67:159–165

    Article  CAS  Google Scholar 

  72. Troev K, Atanasov VI, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of microporous polyurethane elastomer by phosphoric acid esters. J Appl Polym Sci 76:886–893

    Article  CAS  Google Scholar 

  73. Troev K, Grancharov G, Tsevi R (2000) Chemical degradation of polyurethanes III. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate. Polym Degrad Stabil 70:43–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simón, D., Borreguero, A.M., de Lucas, A., Gutiérrez, C., Rodríguez, J.F. (2014). Sustainable Polyurethanes: Chemical Recycling to Get It. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_275

Download citation

Publish with us

Policies and ethics