Skip to main content

Microwaves in Green and Sustainable Chemistry

  • Chapter
  • First Online:
Environment, Energy and Climate Change I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 32))

  • 2164 Accesses

Abstract

Since the creation of the group of microwaves and sustainable organic synthesis (MSOC) we have been interested in the development and applications of synthetic methodologies for green and sustainable synthesis. In this account major contributions in microwave-assisted organic synthesis (MAOS) related to green and sustainable chemistry are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anastas PT, Warner J (1998) Green Chemistry. Theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Noyori R (2010) Insight: Green Chemistry: the key to our future. Tetrahedron 66:1028

    Article  CAS  Google Scholar 

  3. Li C-J, Anastas PT eds (2012) Chem Soc Rev 41:4. Green Chemistry themed issue

    Google Scholar 

  4. Dunn PJ (2012) The importance of Green Chemistry in process research and development. Chem Soc Rev 41:1452–1461

    Article  CAS  Google Scholar 

  5. Burmeister M, Rauch F, Eilks I (2012) Education for Sustainable Development (ESD) and chemistry education. Chem Educ Res Pract 13:59–68

    Article  CAS  Google Scholar 

  6. Meyer DE, González MA (2014) The economics of green and sustainable chemistry. In: Marteel-Parrish AE, Abraham MA (eds) Green chemistry and engineering. A pathway to sustainability, AIChE-Wiley, Hoboken pp 287–324

    Google Scholar 

  7. Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Tech 37:94A–101A

    Article  Google Scholar 

  8. Trost B (1991) The atom economy-a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  9. Sheldon RA (1992) Organic synthesis; past, present and future. Chem Ind 903–906

    Google Scholar 

  10. de la Hoz A, Loupy A (2012) Microwaves in organic synthesis, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  11. Kappe CO, Stadler A (2012) Microwaves in organic and medicinal chemistry, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  12. König B, NOP Project (2014) Sustainability in the organic chemistry lab course. http://www.oc-praktikum.de/nop/en-entry. Accessed 19 Feb 2014

  13. Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1:123–132

    Article  CAS  Google Scholar 

  14. Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13:794–805

    Article  CAS  Google Scholar 

  15. Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H (2009) Energetic assessment of the Suzuki–Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chem 11:1894–1899

    Article  CAS  Google Scholar 

  16. Benaskar F, Ben-Abdelmoumen A, Patil NG, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Krtschil U, Schouten JC (2011) Cost analysis for a continuously operated fine chemicals production plant at 10 kg/day using a combination of microprocessing and microwave heating. J Flow Chem 2:74–89

    Article  Google Scholar 

  17. Díez-Barra E, de la Hoz A, Díaz-Ortiz A, Prieto P (1991) Preparation of racemic and enantiomerically pure ketene acetals. Synth Commun 23:1935–1942

    Google Scholar 

  18. Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Prieto, P, Moreno A (1994) Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions. J Chem Soc Perkin Trans 1:3595–3598

    Google Scholar 

  19. Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Prieto P, Moreno A, Langa F, Prangé T, Neuman A (1995) Facial selectivity in cycloadditions of a chiral ketene acetal under microwave irradiation in solvent-free conditions. Configurational assignment by NOESY experiments and molecular mechanics calculations. J Org Chem 60:4160–4166

    Article  Google Scholar 

  20. Díaz-Ortiz A, Carrillo JR, Gómez-Escalonilla MJ, de la Hoz A, Moreno, A, Prieto P (1998) First Diels–Alder reaction of pyrazolyl imines under microwave irradiation. Synlett 1069–1070

    Google Scholar 

  21. Díaz-Ortiz A, de la Hoz A, Langa F (2000) Microwave irradiation in solvent-free conditions: an eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem 2:165–172

    Article  Google Scholar 

  22. Díaz-Ortiz A, Carrillo JR, Cossío FP, Gómez-Escalonilla MJ, de la Hoz A, Moreno A, Prieto P (2000) Synthesis of pyrazolo[3,4-b]pyridines by cycloaddition reactions under microwave irradiation. Tetrahedron 56:1569–1577

    Article  Google Scholar 

  23. Díaz-Ortiz A, de la Hoz A, Carrillo JR, Herrero M (2012) Selectivity modifications under microwave irradiation. In: de la Hoz A, Loupy A (eds) Microwaves in Organic Synthesis, 3rd edn. Wiley, Weinheim, pp 209–244

    Google Scholar 

  24. Almena I, Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Loupy A (1996) Solvent-free benzylations of 2-pyridone. Regiospecific N- or C-alkylation. Chem Lett 5:333–334

    Article  Google Scholar 

  25. de la Hoz A, Prieto P, Rajzmann M, de Cózar A, Díaz-Ortiz A, Moreno A, Cossío FP (2008) Selectivity under microwave irradiation. Benzylation of 2-pyridone: an experimental and theoretical study. Tetrahedron 64:8169–8176

    Article  Google Scholar 

  26. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis – a critical technology overview. Green Chem 6:128–141

    Article  Google Scholar 

  27. Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave-assisted chemical reactions. Chem Eng Technol 26:1207–1216

    Article  Google Scholar 

  28. Stadler A, Yousefi BH, Dallinger D, Walla P, Van der Eycken E, Kaval N, Kappe CO (2003) Scalability of microwave assisted organic synthesis. From single-mode to multimode parallel batch reactors. Org Process Res Develop 7:707–716

    Article  CAS  Google Scholar 

  29. Alcázar J, Diels G, Schoentjes B (2004) Reproducibility across microwave instruments: first example of genuine parallel scale up of compounds under microwave irradiation. QSAR Comb Sci 23:906–910

    Article  Google Scholar 

  30. Alcázar J (2005) Reproducibility across microwave instruments: Preparation of a set of 24 compounds on a multiwell plate under temperature-controlled conditions. J Comb Chem 7:353–355

    Article  Google Scholar 

  31. Loones KTJ, Maes BUW, Rombouts G, Hostyna S, Diels G (2005) Microwave-assisted organic synthesis: scale-up of palladium catalyzed aminations using single-mode and multi-mode microwave equipment. Tetrahedron 61:10338–10348

    Article  CAS  Google Scholar 

  32. Murray JK, Gellman SH (2006) Microwave-assisted parallel synthesis of a 14-helical beta-peptide library. J Comb Chem 8:58–65

    Article  CAS  Google Scholar 

  33. Alcázar J, de la Hoz A, Díaz-Ortiz A, Carrillo JR, Herrero MA (2007) Reproducibility and scalability of solvent-free microwave assisted reactions: from domestic ovens to controllable parallel applications. Comb Chem High Throughput Screen 10:163–169

    Article  Google Scholar 

  34. Alcázar J, de la Hoz A, Díaz-Ortiz A, Carrillo JR, Herrero MA, Fontana A, Muñoz JM, Prieto P, de Cózar A (2011) Influence of polarity on the scalability and reproducibility of solvent-free reactions comb. Chem High Throughput Screen 14:109–116

    Article  Google Scholar 

  35. Vázquez E, Prato M (2009) Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 2:3819–3824

    Google Scholar 

  36. Vázquez E, Georgakilas V, Prato M (2002) Microwave-assisted purification of HIPCO carbon nanotubes Chem. Commun. 2308–2309

    Google Scholar 

  37. Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675

    Article  CAS  Google Scholar 

  38. Brunetti FG, Herrero MA, Muñoz JM, Giordani S, Díaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato P, Vázquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581

    Article  CAS  Google Scholar 

  39. Brunetti FG, Herrero MA, Muñoz JM, Díaz-Ortiz A, Alfonsi J, Meneghetti M, Prato M, Vázquez E (2008) Microwave-induced multiple functionalization of carbon nanotubes. J Am Chem Soc 130:8094–8100

    Article  CAS  Google Scholar 

  40. Carrillo JR, Díaz-Ortiz A, de la Hoz A, Moreno A, Gómez MV, Prieto P, Sánchez-Migallón A, Vázquez E (2003) Application of microwave irradiation, solid supports and catalyst in environmentally benign heterocyclic chemistry. Targets Heterocyclic Chem 7:64–90

    CAS  Google Scholar 

  41. de la Hoz A, Díaz-Ortiz A, Fraile JM, Gómez MV, Mayoral JA, Moreno A, Saiz A, Vázquez E (2001) Synergy between heterogeneous catalysis and microwave irradiation in an efficient one-pot synthesis of benzene derivatives via ring-opening of Diels–Alder cycloadducts of substituted furans. Synlett 753–756

    Google Scholar 

  42. Fraile JM, García JI, Gómez MV, de la Hoz A, Mayoral JA, Moreno A, Prieto P, Salvatella L, Vázquez E (2001) Tandem Diels–Alder aromatization reactions of furans under unconventional reaction conditions – experimental and theoretical studies. Eur J Org Chem 2891–2899

    Google Scholar 

  43. Moreno A, Gómez MV, Vázquez E, de la Hoz A, Díaz-Ortiz A, Prieto P, Mayoral JA, Pires E (2004) An efficient one-pot synthesis of phenol derivatives by ring opening and rearrangement of Diels–Alder cycloadducts of substituted furans using heterogeneous catalysis and microwave irradiation. Synlett 1259–1263

    Google Scholar 

  44. Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148

    Article  CAS  Google Scholar 

  45. Bose AK, Manhas MS, Ganguly SN, Sharma AH, Banik BK (2002) MORE chemistry for less pollution: applications for process development. Synthesis 1578–1591

    Google Scholar 

  46. Díaz-Ortiz A, Elguero J, de la Hoz A, Jiménez A, Moreno A, Moreno S, Sánchez-Migallón A (2005) Microwave-assisted synthesis and dynamic behavior of N2, N4, N6-Tris(1H-pyrazolyl)-1,3,5-triazine-2,4,6-triamines. QSAR Comb Sci 24:649–659

    Article  Google Scholar 

  47. Moral M, Ruiz A, Moreno A, Díaz-Ortiz A, López-Solera I, de la Hoz A, Sánchez-Migallón A (2010) Microwave-assisted synthesis of pyrazolyl bistriazines. Tetrahedron 66:121–127

    Article  CAS  Google Scholar 

  48. de Cózar A, Millán MC, Cebrián C, Prieto P, Díaz-Ortiz A, de la Hoz A, Cossío FP (2010) Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions. Org Biomol Chem 8:1000–1009

    Article  Google Scholar 

  49. Rodriguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A (2011) “In silico” mechanistic studies as predictive tools in microwave-assisted organic synthesis. Org Biomol Chem 9:2371–2377

    Article  CAS  Google Scholar 

  50. Rodriguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A, García JI (2014) The issue of ‘molecular radiators’ in microwave assisted reactions. Computational calculations on ring closing metathesis (RCM). Org Biomol Chem 12:2436–2445

    Article  CAS  Google Scholar 

  51. Stuerga D, Pribetich P (2012) Key ingredients for mastery of chemical microwave processes. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley, Weinheim, pp 105–126

    Google Scholar 

  52. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094

    Article  CAS  Google Scholar 

  53. Langa F, de la Cruz P, de la Hoz A, Espíldora E, Cossío FP, Lecea B (2000) Modification of regioselectivity in cycloadditions to C70 under microwave irradiation. J Org Chem 65:2499–2507

    Article  CAS  Google Scholar 

  54. Rodriguez AM, Cebrián C, Prieto P, García JI, de la Hoz A, Díaz-Ortiz A (2012) DFT studies on cobalt-catalyzed cyclotrimerization reactions: the mechanism and origin of reaction improvement under microwave irradiation. Chem Eur J 18:6217–6224

    Article  CAS  Google Scholar 

  55. Miura T, Wasielewski MR (2011) Manipulating photogenerated radical ion pair lifetimes in wirelike molecules using microwave pulses: molecular spintronic gates. J Am Chem Soc 133:2844–2847

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the MINECO of Spain through project CTQ2011-22410 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio de la Hoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Hoz, A., Díaz-Ortiz, Á., Prieto, P. (2014). Microwaves in Green and Sustainable Chemistry. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_267

Download citation

Publish with us

Policies and ethics