Skip to main content

Removal of Organic Pollutants from Industrial Wastewater by Treatment with Oxidoreductase Enzymes

  • Chapter
  • First Online:
Environment, Energy and Climate Change I

Abstract

Removal of persistent organic pollutants in wastewaters of industrial origin is an increasingly relevant issue in industrialized countries that needs addressing. Remarkable research efforts have been made for the development and implementation of new efficient and eco-friendly treatments capable of reducing, or even eliminating, toxic compounds in effluents prior to their disposal. Enzymatic methods appear to be a promising technology for this task, with a minor impact on ecosystems as compared to physicochemical methods. The applicability of such technology has been explicitly demonstrated in a huge number of publications and patents registered to date.

The present chapter focuses on the application of oxidoreductase enzymes in industrial wastewaters treatment. Numerous redox enzymes, including peroxidases, tyrosinases, and laccases from different sources, and even hemoglobin from animal blood have exhibited their potential for the remediation of a broad spectrum of recalcitrant organic compounds. However the implementation of this technology on an industrial scale still needs further research. Here the most important aspects about the current situation of the subject and future perspectives for the use of redox enzymes in industrial wastewaters treatment are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BOD:

Biochemical oxygen demand

BPA:

Bisphenol A

CLEAs:

Cross-linked enzyme aggregates

COD:

Chemical oxygen demand

CoI:

Compound I of peroxidase

CoII:

Compound II of peroxidase

CPO:

Chloroperoxidase

EDCs:

Endocrine disrupting compounds

Hb:

Hemoglobin

HRP:

Horseradish peroxidase

LiP:

Lignin peroxidase

metHb:

metHemoglobin

MnP:

Manganese peroxidase

PAHs:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PCDDs:

Polychlorinated dibenzodioxins

PCDFs:

Polychlorinated dibenzofurans

PEG:

Polyethylene glycol

POPs:

Persistent organic pollutants

QSAR:

Quantitative structure–activity relationship

SBP:

Soya bean peroxidase

US EPA:

United States Environmental Protection Agency

WRF:

White-rot fungi

WWT:

Wastewater treatment

WWTPs:

Wastewater treatment plants

References

  1. ACS (2014) CAS Registry. https://www.cas.org/content/chemical-substances. Accessed 11 Feb 2014

  2. European Community (2004) Regulation No 850/2004 of the European Parliament and of the Council of 29 April 2004 on Persistent Organic Pollutants and Amending Directive 79/117/EEC. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri¼OJ:L:004:158:0007:0049:EN:PDF

  3. Busca G, Berardinelli S, Resini C et al (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    Article  CAS  Google Scholar 

  4. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  5. Klibanov AM, Alberti BN, Morris ED et al (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J Appl Biochem 2:414–421

    CAS  Google Scholar 

  6. Torres E, Ayala M (2010) Biocatalysis based on heme peroxidases. Springer-Verlag, Berlin/Heidelberg

    Book  Google Scholar 

  7. Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technol 97:2195–2210

    Article  CAS  Google Scholar 

  8. EPA (2013) Water: CWA Methods, Priority Pollutants. http://water.epa.gov/scitech/methods/cwa/pollutants.cfm Accessed 26 Feb 2014

  9. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometer detection in textile industries wastewater. Dyes Pigments 61:121–139

    Article  CAS  Google Scholar 

  10. EPA (2011) Persistent Bioaccumulative and Toxic (PBT) Chemical Program. Dioxins and Furans. http://www.epa.gov/pbt/pubs/dioxins.htm Accessed 26 March 2014

  11. EPA (2013) Ecosystems & Environment: Wastewater treatment. http://www.epa.gov/research/endocrinedisruption/wastewater.htm Accessed 4 March 2014

  12. Federal Register, The Daily Journal of the US Government (2013) Endocrine disruptor screening program; final second list of chemicals and substances for tier 1 screening. document 78 FR 35922

    Google Scholar 

  13. Vuorinen A, Odermatt A, Schuster D (2013) In silico methods in the discovery of endocrine disrupting chemicals. J Steroid Biochem Mol Biol 137:18–26

    Article  CAS  Google Scholar 

  14. Husain Q, Qayyum S (2013) Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: a review. Crit Rev Biotech 33:260–292

    Article  CAS  Google Scholar 

  15. Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technol 98:2369–2385

    Article  Google Scholar 

  16. Husain (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9:117–140

    Google Scholar 

  17. Dunford HB, Jones PA (2010) Peroxidases and catalases: biochemistry, biophysics, biotechnology and physiology. Wiley, New Jersey

    Google Scholar 

  18. Nicell JA, Bewtra JK, Biswas N et al (1993) Reactor development for peroxidase catalyzed polymerization and precipitation of phenols from wastewater. Water Res 27:1629–1639

    Article  CAS  Google Scholar 

  19. Klibanov AM (1982) Enzymatic removal of hazardous pollutants from industrial aqueous effluents. Enzyme Eng 6:319–323

    Article  CAS  Google Scholar 

  20. Regalado C, García-Almendárez BE, Duarte-Vázquez MA (2004) Biotechnological applications of peroxidases. Phytochem Rev 3:243–256

    Article  CAS  Google Scholar 

  21. González-Sánchez MI, Laurenti M, Rubio-Retama J et al (2011) Fluorescence decrease of conjugated polymers by the catalytic activity of horseradish peroxidase and its application in phenolic compounds detection. Biomacromolecules 12:1332–1338

    Article  Google Scholar 

  22. González-Sánchez MI, Rubio-Retama J, López-Cabarcos E et al (2011) Development of an acetaminophen amperometric biosensor based on peroxidase entrapped in polyacrylamide microgels. Biosen Bioelectron 26:1883–1889

    Article  Google Scholar 

  23. Valero E, García-Carmona F (1998) A continuous spectrophotometric method based on enzymatic cycling for determining L-glutamate. Anal Biochem 259:265–271

    Article  CAS  Google Scholar 

  24. Hiner A, Hernández-Ruiz J, Williams GA et al (2001) Catalase-like oxygen production by horseradish peroxidase must predominantly be an enzyme-catalyzed reaction. Arch Biochem Biophys 392:295–302

    Article  CAS  Google Scholar 

  25. Arnao MB, Acosta M, del Río JA et al (1990) A kinetic study on the suicide inactivation of peroxidase and hydrogen peroxide. Biochim Biophys Acta 1041:43–47

    Article  CAS  Google Scholar 

  26. Valderrama B, Ayala M, Vazquez-Duhalt R (2002) Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 9:555–565

    Article  CAS  Google Scholar 

  27. Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Techn Biotech 69:141–153

    Article  CAS  Google Scholar 

  28. Wagner M, Nicell JA (2001) Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater. Water Sci Technol 43:253–260

    CAS  Google Scholar 

  29. Auriol M, Filali-Meknassi Y, Tyagi RD et al (2007) Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater. Chemosphere 68:1830–1837

    Article  CAS  Google Scholar 

  30. Zheng W, Colosi LM (2011) Peroxidase-mediated removal of endocrine disrupting compound mixtures from water. Chemosphere 85:553–557

    Article  CAS  Google Scholar 

  31. Pramparo L, Stüber F, Font J et al (2010) Immobilisation of horseradish peroxidase on Eupergit C for the enzymatic elimination of phenol. J Hazard Mater 177:990–1000

    Article  CAS  Google Scholar 

  32. Alemzadeh I, Nejati S (2009) Phenols removal by immobilized horseradish peroxidase. J Hazard Mater 166:1082–1086

    Article  CAS  Google Scholar 

  33. Zhang YP, Liu TH, Wang Q et al (2012) Synthesis of novel poly(N,N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels as carrier of horseradish peroxidase immobilization for pollution treatment. Macromol Res 20:484–489

    Article  CAS  Google Scholar 

  34. Niu JF, Xu JJ, Da YR et al (2013) Immobilization of horseradish peroxidase by electrospun fibrous membranes for adsorption and degradation of pentachlorophenol in water. J Hazard Mater 246–247:119–125

    Article  Google Scholar 

  35. Bayramoglu G, Arica MY (2008) Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156:148–155

    Article  CAS  Google Scholar 

  36. Zhang F, Zheng B, Zhang J et al (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473

    Article  CAS  Google Scholar 

  37. Zhai R, Zhang B, Wan YZ et al (2013) Chitosan-halloysite hybrid nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309

    Article  CAS  Google Scholar 

  38. Jiang Y, Tang W, Gao J et al (2014) Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzyme Microb Technol 55:1–6

    Article  CAS  Google Scholar 

  39. McEldoon JP, Pokora AR, Dordick JS (1995) Lignin peroxidase-type activity of soybean peroxidase. Enzyme Microb Technol 17:359–365

    Article  CAS  Google Scholar 

  40. Kamal JKA, Behere DV (2002) Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry 41:9034–9042

    Article  CAS  Google Scholar 

  41. Hailu G, Weersink A, Cahlík F (2010) Examining the prospects for commercialization of soybean peroxidase. AgBioForum 13:263–273

    Google Scholar 

  42. Gómez M, Murcia MD, Ortega S et al (2012) Removal of 4-chlorophenol in a continuous membrane bioreactor using different commercial peroxidases. Desalin Water Treat 37:97–107

    Article  Google Scholar 

  43. Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-diclorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137

    CAS  Google Scholar 

  44. Dong SP, Mao L, Luo SQ et al (2014) Comparison of lignin peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from water. Environ Sci Pollut Res Int 21:2358–2366

    Article  CAS  Google Scholar 

  45. Aitken MD, Irvine RL (1989) Stability testing of ligninase and Mn-peroxidase from Phanerochaete-chrysosporium. Biotechnol Bioeng 34:1251–1260

    Article  CAS  Google Scholar 

  46. Aitken MD, Massey IJ, Chen TP et al (1994) Characterization of reaction-products from the enzyme-catalyzed oxidation of phenolic pollutants. Water Res 28:1879–1889

    Article  CAS  Google Scholar 

  47. Carmichael R, Fedoruk PM, Pickar MA (1985) Oxidation of phenols by chloroperoxidase. Biotechnol Lett 7:289–294

    Article  CAS  Google Scholar 

  48. Dr D, Corbett MD (1991) Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines. Chem Res Toxicol 4:556–560

    Article  Google Scholar 

  49. Zhang J, Feng MY, Jiang YC et al (2012) Eficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chem Eng J 191:236–242

    Article  CAS  Google Scholar 

  50. Ortiz-Leon M, Velasco L, Vazquez-Duhalt R (1995) Biocatalytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide. Biochem Biophys Res Commun 215:968–973

    Article  CAS  Google Scholar 

  51. González-Sánchez MI, Manjabacas MC, García-Carmona F et al (2009) Mechanism of acetaminophen oxidation by the peroxidase-like activity of methemoglobin. Chem Res Toxicol 22:1841–1850

    Article  Google Scholar 

  52. González-Sánchez MI, García-Carmona F, Macià H et al (2011) Catalase-like activity of human methemoglobin: a kinetic and mechanistic study. Arch Biochem Biophys 516:10–20

    Article  Google Scholar 

  53. Woodward J, Allen BF, Scott MA (1984) Measurement of phenol concentrations using hemoglobin. Biotechnol Bioeng Symp 14:435–438

    CAS  Google Scholar 

  54. Chapsal JM, Bourbigot MM, Thomas D (1986) Oxidation of aromatic compounds by hemoglobin. Water Res 20:709–713

    Article  CAS  Google Scholar 

  55. Pérez-Prior MT, Gómez-Bombarelli R, González-Sánchez MI et al (2012) Biocatalytic oxidation of phenolic compounds by bovine methemoglobin in the presence of H2O2. Quantitative structure-activity relationships. J Hazard Mater 241–242:207–215

    Article  Google Scholar 

  56. Liu J, Guan J, Lu M et al (2012) Hemoglobin immobilized with modified “fish-in-net” approach for the catalytic removal of aniline. J Hazard Mater 217–218:156–163

    Article  Google Scholar 

  57. Ortiz de Montellano PR, Catalano CE (1985) Epoxidation of styrene by hemoglobin and myoglobin. Transfer of oxidizing equivalents to the protein surface. J Biol Chem 260:9265–9271

    CAS  Google Scholar 

  58. Torres E, Vazquez-Duhalt R (2000) Chemical modification of hemoglobin improves biocatalytic oxidation of PAHs. Biochem Biophys Res Commun 273:820–823

    Article  CAS  Google Scholar 

  59. Laveille P, Falcimaigne A, Chamouleau F et al (2010) Hemoglobin immobilized on mesoporous silica as effective material for the removal of polycyclic aromatic hydrocarbons pollutants from water. New J Chem 34:2153–2165

    Article  CAS  Google Scholar 

  60. Liu Q, Yu J, Xu Y et al (2013) Bioelectrocatalytic dechlorination of trichloroacetic acid at gel-immobilized hemoglobin on multiwalled carbon nanotubes modified graphite electrode: kinetic modeling and reaction pathways. Electrochim Acta 92:153–160

    Article  CAS  Google Scholar 

  61. Valero E, Varón R, García-Carmona F (2002) Tyrosinase-mediated oxidation of acetaminophen to 4-acetamido-o-benzoquinone. Biol Chem 383:1931–1939

    Article  CAS  Google Scholar 

  62. Valero E, Escribano J, García-Carmona F (1988) Reactions of 4-methyl-o-benzoquinone, generated chemically or enzymatically, in the presence of l-proline. Phytochemistry 27:2055–2061

    Article  CAS  Google Scholar 

  63. Valero E, Carrión P, Varón R et al (2003) Quantification of acetaminophen by oxidation with tyrosinase in the presence of Besthorn’s hydrazone. Anal Biochem 318:187–195

    Article  CAS  Google Scholar 

  64. Mukherjee S, Basak B, Bhunia B et al (2013) Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev Environ Sci Biotechnol 12:61–73

    Article  CAS  Google Scholar 

  65. Atlow SC, Bonadonna-Aparo L, Klibanov AM (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnol Bioeng 26:599–603

    Article  CAS  Google Scholar 

  66. Wada S, Ichikawa H, Tatsumi K (1995) Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant. Biotechnol Bioeng 45:304–309

    Article  CAS  Google Scholar 

  67. Amjad K, Qayyum H (2007) Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes. J Environ Sci 19:396–402

    Article  Google Scholar 

  68. Toscano G, Colarieti ML, Greco G Jr (2003) Oxidative polymerisation of phenols by a phenol oxidase from green olives. Enzyme Microb Technol 33:47–54

    Article  CAS  Google Scholar 

  69. Saitoh T, Asano K, Hiraide M (2011) Removal of phenols in water using chitosan-conjugated thermo-responsive polymers. J Hazard Mater 185:1369–1373

    Article  CAS  Google Scholar 

  70. Xu DY, Yang Z (2013) Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere 92:391–398

    Article  CAS  Google Scholar 

  71. Sirim D, Wagenr F, Wang L et al (2011) The laccase engineering database: a classification and analysis system for laccases and related multicopper oxidases. Database (Oxford). doi:10.1093/database/bar006

    Google Scholar 

  72. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  73. Reiss R, Ihssen J, Richter M et al (2013) Laccase versus Laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8:e65633

    Article  CAS  Google Scholar 

  74. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role of laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  75. Husain M, Husain Q (2008) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Crit Rev Environ Sci Technol 38:1–42

    Article  CAS  Google Scholar 

  76. Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Lett 30:215–242

    Article  CAS  Google Scholar 

  77. Ba S, Haroune L, Cruz-Morató C et al (2014) Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters. Sci Total Environ 487:748–755

    Article  CAS  Google Scholar 

  78. Ba S, Arsenault A, Hassani T et al (2013) Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 33:404–418

    Article  CAS  Google Scholar 

  79. Durán N, Rosa MA, D’Annibale A et al (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Article  Google Scholar 

  80. Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technol 101:2331–2350

    Article  CAS  Google Scholar 

  81. Ikehata K, Buchanan ID, Smith DW (2004) Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. Environ Eng Sci 3:1–19

    Article  CAS  Google Scholar 

  82. Songulashvili G, Elisashvili V, Wasser SP et al (2007) Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb Technol 41:57–61

    Article  CAS  Google Scholar 

  83. Elisashvili V, Penninckx M, Kachlishvili E et al (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource Technol 99:457–462

    Article  CAS  Google Scholar 

  84. Qiu W, Zhang W, Chen H (2014) Flavonoid-rich plants used as sole substrate to induce the solid-state fermentation of laccase. Appl Biochem Biotechnol 172:3583–3592

    Article  CAS  Google Scholar 

  85. Margot J, Bennati-Granier C, Maillard J et al (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63

    Article  Google Scholar 

  86. Camarero S, Cañas AI, Martínez A et al (2010) Laccases having high redox potential obtained through directed evolution. Patent WO2010058057 A1

    Google Scholar 

  87. Debaste F, Songulashvili G, Penninckx MJ (2014) The potential of Cerrena unicolor laccase immobilized on mesoporous silica beads for removal of organic micropollutants in wastewaters. Desalin Water Treat 52:2344–2347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edelmira Valero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valero, E., González-Sánchez, MI., Pérez-Prior, MT. (2014). Removal of Organic Pollutants from Industrial Wastewater by Treatment with Oxidoreductase Enzymes. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_266

Download citation

Publish with us

Policies and ethics