Skip to main content

Molecular Biology of Stress Genes in Methanogens: Potential for Bioreactor Technology

  • Chapter
  • First Online:
Biomethanation I

Abstract

Many agents of physical, chemical, or biological nature, have the potential for causing cell stress. These agents are called stressors and their effects on cells are due to protein denaturation. Cells, microbes, for instance, perform their physiological functions and survive stress only if they have their proteins in the necessary concentrations and shapes. To be functional a protein shape must conform to a specific three-dimensional arrangement, named the native configuration. When a stressor (e.g., temperature elevation or heat shock, decrease in pH, hypersalinity, heavy metals) hits a microbe, it causes proteins to lose their native configuration, which is to say that stressors cause protein denaturation. The cell mounts an anti-stress response: house-keeping genes are down-regulated and stress genes are activated. Among the latter are the genes that produce the Hsp70(DnaK), Hsp60, and small heat protein (sHsp) families of stress proteins. Hsp70(DnaK) is part of the molecular chaperone machine together with Hsp40(DnaJ) and GrpE, and Hsp60 is a component of the chaperonin complex. Both the chaperone machine and the chaperonins play a crucial role in assisting microbial proteins to reach their native, functional configuration and to regain it when it is partially lost due to stress. Proteins that are denatured beyond repair are degraded by proteases so they do not accumulate and become a burden to the cell. All Archaea studied to date possess chaperonins but only some methanogens have the chaperone machine. A recent genome survey indicates that Archaea do not harbor well conserved equivalents of the co-chaperones trigger factor, Hip, Hop, BAG-1, and NAC, although the data suggest that Archaea have proteins related to Hop and to the NAC alpha subunit whose functions remain to be elucidated. Other anti-stress means involve osmolytes, ion traffic, and formation of multicellular structures. All cellular anti-stress mechanisms depend on genes whose products are directly involved in counteracting the effects of stressors, or are regulators. The latter proteins monitor and modulate gene activity. Biomethanation depends on the concerted action of at least three groups of microbes, the methanogens being one of them. Their anti-stress mechanisms are briefly discussed in this Chapter from the standpoint of their role in biomethanation with emphasis on their potential for optimizing bioreactor performance. Bioreactors usually contain stressors that come with the influent, or are produced during the digestion process. If the stressors reach levels above those that can be dealt with by the anti-stress mechanisms of the microbes in the bioreactor, the microbes will die or at least cease to function. The bioreactor will malfunction and crash. Manipulation of genes involved in the anti-stress response, particularly those pertinent to the synthesis and regulation of the Hsp70(DnaK) and Hsp60 molecular machines, is a promising avenue for improving the capacity of microbes to withstand stress, and thus to continue biomethanation even when the bioreactor is loaded with harsh waste. The engineering of methanogenic consortia with stress-resistant microbes, made on demand for efficient bioprocessing of stressor-containing effluents and wastes, is a tangible possibility for the near future. This promising biotechnological development will soon become a reality due to the advances in the study of the stress response and anti-stress mechanisms at the molecular and genetic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macario AJL, Conway de Macario E (2000) Heat-shock response, overview. In: Fink G (ed), The encyclopedia of stress. Academic Press, San Diego, California, USA, Vol 2, p 350

    Google Scholar 

  2. Macario AJL, Conway de Macario E (2000) Chaperone proteins. In: Fink G (ed), The Encyclopedia of Stress. Academic Press, San Diego, California, USA, Vol 1, p 429

    Google Scholar 

  3. Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, Maurizi MR (1990) Proc Natl Acad Sci USA 87:3513

    Article  CAS  Google Scholar 

  4. Herman C, D’Ari R (1998) Curr Op Microbiol 1:204

    Article  CAS  Google Scholar 

  5. Wickner S, Maurizi MR, Gottesman S (1999) Science 286:1888

    Article  CAS  Google Scholar 

  6. Hartl FU, Martin J (1995) Curr Op Struct Biol 5:92

    Article  CAS  Google Scholar 

  7. Klumpp M, Baumeister W (1998) FEBS Lett 430:73

    Article  CAS  Google Scholar 

  8. Macario AJL, Conway de Macario E (1999) Genetics 152:1277

    CAS  Google Scholar 

  9. Netzer WJ, Hartl FU (1998) Trends Biochem Sci 23:68

    Article  CAS  Google Scholar 

  10. Ranson NA, White HE, Saibil HR (1998) Biochem J 333:233

    CAS  Google Scholar 

  11. Willison KR (1999) Composition and function of the eukaryotic cytosolic chaperonincontaining TCP-1. In: Bukau B (ed), Molecular chaperones and folding catalysis. Harwood Academic Publishers, Sydney, Australia, p 555

    Google Scholar 

  12. Macario AJL, Lange M, Ahring BK, Conway de Macario E (1999) Microbiol Mol Biol Rev 63:923

    CAS  Google Scholar 

  13. Holden J, Adams MWW, Baross JA (2000). Heat-shock response in hyperthermophilic microorganisms. In: Bell CR, Brylinsky M, Johnson-Green P (eds), Microbial biosystems: New frontiers. Atlantic Canada Society for Microbial Ecology, Acadia University, Wolfville, Nova Scotia, Canada, p 663

    Google Scholar 

  14. Hofman-Bang JP, Lange M, Conway de Macario E, Macario AJL, Ahring BK (1999) Gene 218:387

    Article  Google Scholar 

  15. Ahring BK, Schmidt JE, Winther-Nielsen M, Macario AJL, Conway de Macario E (1993) Appl Environ Microbiol 59:2538

    CAS  Google Scholar 

  16. Clarens M, Cairó JJ, Paris, JM, Macario AJL, Conway de Macario E (1993) Curr Microbiol 26:167

    Article  CAS  Google Scholar 

  17. Schmidt JE, Ahring BK (1996) Biotechnol Bioeng 49:229

    Article  CAS  Google Scholar 

  18. Schmidt JE, Macario AJL, Ahring BK, Conway de Macario E (1992) Appl Environ Microbiol 58:862

    CAS  Google Scholar 

  19. Zinder, S (1993) Physiological ecology of methanogens. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p 128

    Google Scholar 

  20. Madigan MT, Martinko JM, Parker J (2000). Brock Biology of microorganisms, 9th edn. Prentice-Hall Inc, Upper Saddle River, New Jersey, USA

    Google Scholar 

  21. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Microbiol Rev 43:260

    CAS  Google Scholar 

  22. Woese CR (1987) Microbiol Rev 51:221

    CAS  Google Scholar 

  23. Woese CR (1998) Curr Biol 8:R781

    Article  CAS  Google Scholar 

  24. Woese CR, Kandler O, Wheelis ML (1990) Proc Natl Acad Sci USA 87:4576

    Article  CAS  Google Scholar 

  25. Boone DR, Whitman W B, Rouviere P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p35

    Google Scholar 

  26. Macario AJL, Conway de Macario E (2000) Heat resistance. In: Fink G (ed), The encyclopedia of stress. Academic Press, San Diego, California, USA, Vol 2, p 338

    Google Scholar 

  27. Bustard K, Gupta RS (1997) J Mol Evol 45:193

    Article  CAS  Google Scholar 

  28. Csermely P, Schnaider T, Sôti C, Prohászka Z, Nardai G (1998) Pharmacol Ther 79:129

    Article  CAS  Google Scholar 

  29. Fisher G, Tradler T, Zarnt Z (1998) FEBS Lett 426:17

    Article  Google Scholar 

  30. Galat A (1999) Arch Biochem Biophys 371:149

    Article  CAS  Google Scholar 

  31. Gupta RS (1995) Mol Microbiol 15:1

    Article  CAS  Google Scholar 

  32. Gupta RS, Singh B (1994) Curr Biol 4:1104

    Article  CAS  Google Scholar 

  33. Kim KK, Kim R, Kim S-H (1998) Nature 394:595

    Article  CAS  Google Scholar 

  34. Kim R, Kim KK, Yokota H, Kim S-H (1998) Proc Natl Acad Sci USA 95:9129

    Article  CAS  Google Scholar 

  35. Lee GJ, Vierling E (2000) Plant Physiol 122:189

    Article  CAS  Google Scholar 

  36. Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) J Biol Chem 274:15712

    Article  CAS  Google Scholar 

  37. Conway de Macario E, Macario AJL (1994) Trends Biotechnol 12:512

    Article  CAS  Google Scholar 

  38. Archibald JM, Logsdon Jr JM, Doolittle WF (1999) Curr Biol 9:1053

    Article  CAS  Google Scholar 

  39. Gribaldo S, Lumia V, Creti R, Conway de Macario E, Sanangelantoni A, Cammarano P (1999) JBacteriol 181:434

    CAS  Google Scholar 

  40. Gupta RS (1998) Microbiol Mol Biol Rev 62:1435

    CAS  Google Scholar 

  41. Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds), (1995) Archaea. A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, New York, USA

    Google Scholar 

  42. Sprott GD, Beveridge TJ (1993) Microscopy. In: Ferry JG (ed), Methanogenesis. Chapman and Hall, New York, New York, USA, p 81

    Google Scholar 

  43. Pfanner N (1999) Curr Biol 9:R720

    Article  CAS  Google Scholar 

  44. Arsene F, Tomoyasu T, Mogk A, Schirra C, Schulze-Specking A, Bukau B (1999) J Bacteriol 181:3552

    CAS  Google Scholar 

  45. Blaszczak A, Georgopoulos C, Liberek K (1999) Mol Microbiol 31:157

    Article  CAS  Google Scholar 

  46. Morimoto RI (1998) Genes Dev 12:3788

    Article  CAS  Google Scholar 

  47. Glover JR, Lindquist S (1998) Cell 94:73

    Article  CAS  Google Scholar 

  48. Weber-Ban EU, Reid BG, Miranker AD, Horwich AL (1999) Nature 401:90

    Article  CAS  Google Scholar 

  49. Zolkiewski M (1999) J Biol Chem 274:28083

    Article  CAS  Google Scholar 

  50. Korber P, Zander T, Herschlag D, Bardwell JCA (1999) J Biol Chem 274:249

    Article  CAS  Google Scholar 

  51. Bogdanov M, Dowhan W (1999) J Biol Chem 274:36827

    Article  CAS  Google Scholar 

  52. Wang Y-Y, Chen X, Oh H-J, Repasky E, Kazim L, Subjeck J (2000) FEBS Lett 465:98

    Article  CAS  Google Scholar 

  53. Angelidaki I, Ahring BK (1994) Wat Res 28:727

    Article  CAS  Google Scholar 

  54. Angelidaki I, Petersen SP, Ahring BK (1990) Appl Microbiol Biotechnol 33:469

    Article  CAS  Google Scholar 

  55. Koster IW, Koomen E (1988) Appl Microbiol Biotechnol 28:500

    Article  CAS  Google Scholar 

  56. Koster IW, Lettinga G (1988) Biological Wastes 25:51

    Article  CAS  Google Scholar 

  57. Macario AJL, Dugan CB, Conway de Macario E (1991) Gene 108:133

    Article  CAS  Google Scholar 

  58. Macario AJL, Conway de Macario E (1997) Stress 1:123

    Article  CAS  Google Scholar 

  59. Clarens M, Macario AJL, Conway de Macario E (1995) J Mol Biol 250:191

    Article  CAS  Google Scholar 

  60. Conway de Macario E, Clarens M, Macario AJL (1995) J Bacteriol 177:544

    CAS  Google Scholar 

  61. Conway de Macario E, Dugan CB, Macario AJL (1994) J Mol Biol 240:95

    Article  CAS  Google Scholar 

  62. Conway de Macario E, Macario AJL (1995) J Bacteriol 177:6077

    CAS  Google Scholar 

  63. Lange M, Macario AJL, Ahring BK, Conway de Macario E (1997) Curr Microbiol 35: 116

    Article  CAS  Google Scholar 

  64. Macario AJL, Simon VH, Conway de Macario E (1995) Biochim Biophys Acta 1264:173

    Google Scholar 

  65. Hanawa T, Kai M, Kamiya S, Yamamoto T (2000) Cell Stress Chap 5:21

    Article  CAS  Google Scholar 

  66. Macario AJL, Dugan CB, Conway de Macario E, (1993) Biochim Biophys Acta 1216: 495

    CAS  Google Scholar 

  67. Lange M, Macario AJL, Ahring BK, Conway de Macario E (1997) FEMS Microbiol Lett 152:379

    Article  CAS  Google Scholar 

  68. Kobayashi HA, Conway de Macario E, Williams RS, Macario AJL (1988) Appl Environ Microbiol 54:693

    CAS  Google Scholar 

  69. Macario AJL, Conway de Macario E (1988) Appl Environ Microbiol 54:79

    CAS  Google Scholar 

  70. Macario AJL, Conway de Macario E, Ney U, Schoberth AM, Sahm H (1989) Appl Environ Microbiol 55:1996

    CAS  Google Scholar 

  71. Macario AJL, Earle JFK, Chynoweth DP, Conway de Macario E (1989) Syst Appl Microbiol 12:216

    Google Scholar 

  72. Zellner G, Geveke M, Conway de Macario E, Diekmann H (1991) Appl Microbiol Biotechnol 36:404

    Article  CAS  Google Scholar 

  73. Zellner G, Macario AJL, Conway de Macario E (1996) Appl Microbiol Biotechnol 46: 443

    Article  CAS  Google Scholar 

  74. Koornneef E, Macario AJL, Grotenhuis JTC, Conway de Macario E (1990) FEMS Microbiol Ecol 73:225

    Article  CAS  Google Scholar 

  75. Visser FA, van Lier JB, Macario AJL, Conway de Macario E (1991) Appl Environ Microbiol 57:1728

    CAS  Google Scholar 

  76. Macario AJL, Conway de Macario E (2001) Frontiers in Bioscience 6:262–283 http://www.bioscience.org/2001/v6/d/macario/fulltext.htm

    Article  Google Scholar 

  77. Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Cell 93:125

    Article  CAS  Google Scholar 

  78. Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W (1998) Nature Struc Biol 5:855

    Article  CAS  Google Scholar 

  79. Beveridge TJ, Stewart M, Doyle RJ, Sprott GC (1985) J Bacteriol 162:728

    CAS  Google Scholar 

  80. Da Costa MS, Santos H, Galinski EA (1998) Adv Biochem Eng Biotechnol 61:118

    Google Scholar 

  81. Hensel R, Koenig H (1988) FEMS Microbiol Lett 49:75

    Article  CAS  Google Scholar 

  82. Martin DD, Ciulla RA, Roberts MF (1999) Appl Environ Microbiol 65:1815

    CAS  Google Scholar 

  83. Nakamura T, Yamamuro N, Stumpe S, Unemoto T, Bakker EP (1998) Microbiology 144:2281

    CAS  Google Scholar 

  84. Schlösser A, Hamann A, Bossemeyer D, Schneider E, Bakker EP (1993) Mol Microbiol 9:533

    Article  Google Scholar 

  85. Sprott G, Patel G (1986) Syst Appl Microbiol 7:358

    CAS  Google Scholar 

  86. Geissler S, Siegers K, Schiebel E (1998) EMBO J 17:952

    Article  CAS  Google Scholar 

  87. Leroux M, Faendrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) EMBO J 18:6730

    Article  CAS  Google Scholar 

  88. Vainberg IE, Lewis SA, Roemmelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Cell 93:863

    Article  CAS  Google Scholar 

  89. Furutani M, Iida T, Yamano S, Kamino K, Maruyama T (1998) J Bacteriol 180:388

    CAS  Google Scholar 

  90. Herdegen T, Fisher G, Gold BG (2000) Trends Pharmacol Sci (TiPS) 21:3

    Article  CAS  Google Scholar 

  91. Iida T, Furutani M, Nishida F, Maruyama T (1998) Gene 222:249

    Article  CAS  Google Scholar 

  92. Baumeister W, Walz J, Zuehl F, Seemueller E (1998) Cell 92:367

    Article  CAS  Google Scholar 

  93. DeMartino GN, Slaughter CA (1999) J Biol Chem 274:22123

    Article  CAS  Google Scholar 

  94. Maupin-FurlowJA, AldrichHC, Ferry JG (1998) J Bacteriol 180:1480

    Google Scholar 

  95. Maupin-Furlow JA, Ferry JG (1995) J Biol Chem 270:28617

    Article  CAS  Google Scholar 

  96. Zwickel P, Ng D, Woo KM, Klenk H-P, Goldberg AL (1999) J Biol Chem 274:26008

    Article  Google Scholar 

  97. Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Plant Physiol 121:45

    Article  CAS  Google Scholar 

  98. Mayerhofer LE, Macario AJL, Conway de Macario E (1992) J Bacteriol 174:3009

    Google Scholar 

  99. Yao R, Macario AJL, Conway de Macario E (1992) J Bacteriol 174:4683

    CAS  Google Scholar 

  100. Zellner G, Feuerhake E, Joerdening H-J, Macario AJL, Conway de Macario E (1995) Appl Microbiol Biotechnol 43:566

    Article  CAS  Google Scholar 

  101. Zellner G, Macario AJL, Conway de Macario E (1997) FEMS Microbiol Ecol 22:295

    Article  CAS  Google Scholar 

  102. Macario AJL, Visser FA, van Lier JB, Conway de Macario E (1991) J Gen Microbiol 137:2179

    Google Scholar 

  103. Garberi JC, Macario AJL, Conway de Macario E (1985) J Bacteriol 16:1

    Google Scholar 

  104. Koenig H (1988) Can J Microbiol 34:395

    Article  CAS  Google Scholar 

  105. Howgrave-Graham AR, Macario AJL, Wallis FM (1997) J Appl Microbiol 83:587

    Article  Google Scholar 

  106. Ney U, Macario AJL, Conway de Macario E, Aivasidis A, Schoberth SM, Sahm H (1990) Appl Environ Microbiol 56:2389

    CAS  Google Scholar 

  107. Conway de Macario E, Macario AJL (1997) FEMS Microbiol Rev 20:59

    Google Scholar 

  108. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Intl J Syst Bacteriol 47:1068

    Article  CAS  Google Scholar 

  109. Kotelnikova S, Macario AJL, Pedersen K (1998) Intl J Syst Bacteriol 48:357

    Google Scholar 

  110. Sieburth JMcN, Johnson PW, Macario AJL, Conway de Macario E (1993) Mar Ecol Prog Ser 95:81

    Article  Google Scholar 

  111. Conway de Macario E, Macario AJL, Pastini A (1985) Arch Microbiol 142:311

    Article  Google Scholar 

  112. Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Microbiology 144:2655

    Article  CAS  Google Scholar 

  113. Haney P J, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ (1999) Proc Natl Acad Sci USA 96:3578

    Article  CAS  Google Scholar 

  114. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (1998) Biochimie 80:933

    Article  CAS  Google Scholar 

  115. Conway de Macario E, Guerrini M, Dugan CB, Macario AJL (1996) J Mol Biol 262:12

    Article  CAS  Google Scholar 

  116. Metcalf WM, Zhang JK, Apolinario E, Sowers KR, Wolfe RS (1997) Proc Natl Acad Sci USA 94:2626

    Article  CAS  Google Scholar 

  117. Metcalf WW, Zhang JK, Wolfe RS (1998) Appl Environ Microbiol 64:768

    CAS  Google Scholar 

  118. Tumbula DL, Whitman WB (1999) Mol Microbiol 33:1

    Article  CAS  Google Scholar 

  119. Macario AJL, Conway de Macario E (1993) Manipulation and mapping of microbes with antibodies. In: Guerrero R, Pedros-Alio C (eds), Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, Spain, p 505

    Google Scholar 

  120. Ahring BK, Christiansen N, Mathrani I, Hendriksen HV, Macario AJL, Conway de Macario E (1992) Appl Environ Microbiol 58:3677

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Macario, E.C., Macario, A.J.L. (2003). Molecular Biology of Stress Genes in Methanogens: Potential for Bioreactor Technology. In: Ahring, B.K., et al. Biomethanation I. Advances in Biochemical Engineering/Biotechnology, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45839-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45839-5_4

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44322-3

  • Online ISBN: 978-3-540-45839-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics