Skip to main content

Modelling sediment fluxes at large spatial and temporal scales

  • Chapter
  • First Online:
Long Term Hillslope and Fluvial System Modelling

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 101))

Abstract

A conceptual approach to the representation of long-term regional sediment fluxes is presented. Existing models that directly or indirectly address this objective are reviewed, and various issues associated with large scale modelling of sediment fluxes are identified. The approach offered here is designed to operate at large temporal and spatial scales. It is hierarchical, and provides a framework for integrating the results of various other approaches. The approach is based on the thesis that it is the development of landscape configuration that should be modelled on larger scales, and therefore an aggregated modelling approach for landform structure and sediment redistribution is required. Emphasis is placed on (a) frequency/magnitude spectra as a means of integrating sediment generating processes of different nature, (b) temporal aggregation for parameterisation of driving forces, and (c) routing of sediment through a topological network of morphologically defined landscape units. A series of issues requiring further research are identified, including (1) definition of geomorphic storage units, (2) establishment of effective driving and controlling factors within aggregated phases of landform development, (3) establishment of frequency/magnitude spectra for sediment generating and distributing processes, and (4) form/process/form coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beven, K. (1996): Equifinality and uncertainty in geomorphological modelling. In: Rhoads, B.L., and Thorn, C.E. (eds.): The Scientific Nature of Geomorphology. Wiley, Chichester: 289–313.

    Google Scholar 

  • Boardman, J., and Favis-Mortlock, D.(eds.): 1998. Modelling Soil Erosion by Water. NATO ASI Series 55. Springer, Berlin. 531 pp.

    Google Scholar 

  • Boardman, J., and Favis-Mortlock, D. (1998): Modelling soil erosion by water: some conclusions. In: Boardman, J., and Favis-Mortlock, D. (eds.): Modelling Soil Erosion by Water. NATO ASI Series 55. Springer, Berlin: pp. 515–517.

    Google Scholar 

  • Boardman, J., and Favis-Mortlock, D. (1999): Frequency-magnitude distributions for soil erosion, runoff, and rainfall-a comparative analysis. Zeitschrift für Geomorphologie Suppl. 115: 51–70.

    Google Scholar 

  • Brunsden, D. (1993): The persistence of landforms. Zeitschrift für Geomorphologie Suppl. 93: 13–28.

    Google Scholar 

  • Chorley, R.J., and Kennedy, B.A. (1971): Physical Geography-A Systems Approach. Prentice-Hall, London. 370 pp.

    Google Scholar 

  • Coulthard, T.J. (2001): Landscape evolution models: a software review. Hydrological Processes 15: 15–173.

    Article  Google Scholar 

  • Coulthard, T.J., Kirkby, M.J., and Macklin, M.G. (1996): A cellular automaton landscape evolution model. In: Abrahart, R.J. (ed.): Proceedings of the 1st International Conference on GeoComputation. School of Geography, University of Leeds: 248–281.

    Google Scholar 

  • Coulthard, T.J., Kirkby, M.J., and Macklin, M.G. (1997): Modelling hydraulic, sediment transport and slope processes, at a catchment scale, using a cellular automaton approach. In: Pascoe, R.T. (ed.): Proceedings of the 2nd Annual Conference: GeoComputation 97. Otago University, Dunedin: 309–318.

    Google Scholar 

  • Coulthard, T.J., Kirkby, M.J., and Macklin, M.G. (1999): Modelling the impacts of Holocene environmental change in an upland river catchment, using a cellular automaton approach. In: Brown, A.G., and Quine, T.A. (eds.): Fluvial Processes and Environmental Change. John Wiley and Sons, New York: 31–46.

    Google Scholar 

  • Coulthard, T.J., and Macklin, M.G. (this volume): Long-term and large scale high resolution catchment modelling: Innovations and challenges arising from the NERC Land Ocean Interaction Study (LOIS). In: Lang, A., Hennrich, K.P., and Dikau, R. (eds.): Long term hillslope and fluvial system modelling: Concepts and case studies from the Rhine river catchment, Lecture Notes in Earth Sciences, Springer, Heidelberg: 123–134.

    Google Scholar 

  • Crozier, M.J., and Preston, N.J. (1999): Modelling changes in terrain resistance as a component of landform evolution in unstable hill country. In: Hergarten, S., and Neugebauer, H.J. (eds.): Process Modelling and Landform Evolution. Lecture Notes in Earth Sciences 78. Springer, Heidelberg: 267–284.

    Chapter  Google Scholar 

  • Crozier, M.J. (1999): The frequency and magnitude of geomorphic processes and landform behaviour. Zeitschrift für Geomorphologie Suppl. 115: 35–50.

    Google Scholar 

  • Dikau, R. 1999. The need for field evidence in modelling landform evolution. In Hergarten, S., and Neugebauer, H.J. (eds.): Process Modelling and Landform Evolution. Lecture Notes in Earth Sciences 78. Springer, Berlin. pp. 3–12.

    Chapter  Google Scholar 

  • Favis-Mortlock, D., and Boardman, J. (1995): Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena, 25: 365–387.

    Article  Google Scholar 

  • Favis-Mortlock, D., Boardman, J., and Bell, M. (1997): Modelling long-term anthropogenic erosion of a loess cover: South Downs, UK. The Holocene, 7(1): 79–89.

    Article  Google Scholar 

  • Favis-Mortlock, D., and Savabi, M.R. (1996): Shifts in rates and spatial distributions of soil erosion and deposition under climate change. In: Anderson, M.G., and Brooks, S.M. (eds.): Advances in Hillslope Processes. John Wiley and Sons: 529–560.

    Google Scholar 

  • Gallart, F. (1995): The relative geomorphic work effected by four processes in rainstorms: a conceptual approach to magnitude and frequency. Catena, 25(1-4): 353–364.

    Article  Google Scholar 

  • Glaser, R., Brazdil, R., Pfister, C., Dobrovolny, P., Vallve, M.B., Bokwa, A., Camuffo, D., Kotyza, O., Limanowka, D., Racz, L., and Rodrigo, F.S. (1999): Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Climatic Change, 43: 169–200.

    Article  Google Scholar 

  • Hovius, N., Stark, C.P., and Allen, P.A. (1997): Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3): 231–234.

    Article  Google Scholar 

  • Kirkby, M.J. (1998): Modelling across scales: the MED ALUS family of models. In: Boardman, J., and Favis-Mortlock, D. (eds.): Modelling Soil Erosion by Water. Springer, Berlin: 161–173.

    Google Scholar 

  • Kirkby, M.J. (1999) Landscape modelling at regional to continental scales. In: Hergarten, S., and Neugebauer, H.J. (eds.): Process Modelling and Landform Evolution. Lecture Notes in Earth Sciences. Springer, Berlin: 189–203.

    Google Scholar 

  • Kirkby, M.J., Abrahart, R., McMahon, M.D., Shao, J., and Thornes, J.B. (1998): MEDALUS soil erosion models for global change. Geomorphology, 24: 35–49.

    Article  Google Scholar 

  • Lane, S.N., and Richards, K.S. (1997): Linking river channel form and process: time, space and causality revisited. Earth Surface Processes and Landforms, 22: 249–260.

    Article  Google Scholar 

  • Lang, A. (in press) A frequency analysis of phases of colluviation in the loess hills of south Germany. Catena.

    Google Scholar 

  • Lang, A., and Hönscheidt, S. (1999): Age and source of colluvial sediments at Vaihingen-Enz, Germany. Catena, 38: 89–107.

    Article  Google Scholar 

  • Lang, A. and Nolte, S. (1999): The chronology of Holocene alluvial sediments from the Wetterau, Germany, provided by optical and 14C dating. The Holocene, 9(2), 207–214.

    Article  Google Scholar 

  • Lang, A., Bork, H.-R., Mäckel, R., Preston, N.J., and Dikau, R. (2000): Land use and climate impacts on fluvial systems during the period of agriculture-examples from the Rhine catchment. PAGES Newsletter, 8(3): 11–13.

    Google Scholar 

  • Lang, A., Bork, H.-R., Mäckel, R., Preston, N.J., Wunderlich, J., and Dikau, R. (in press): Changes in sediment flux and storage within a fluvial system-some examples from the Rhine catchment. Hydrological Processes.

    Google Scholar 

  • Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., and Syczen, M.E. (1998): The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6): 527–544.

    Article  Google Scholar 

  • Nearing, M.A., Foster, G.R., Lane, L.J., and Finkner, S.C. (1989): A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the American Society of Agricultural Engineers, 32: 1587–1593.

    Google Scholar 

  • Nicholas, A.P., Ashworth, P.J., Kirkby, M.J., Macklin, M.G., and Murray, T. (1995): Sediment slugs: large scale fluctuations in fluvial sediment transport rates and storage volumes. Progress in Physical Geography, 19: 500–519.

    Article  Google Scholar 

  • Pearce, A.J. (1976): Magnitude and frequency of erosion by Hortonian overland flow. Journal of Geology, 84: 65–80.

    Article  Google Scholar 

  • Preston, N.J. (1999): Event-induced changes in landsurface condition-implications for subsequent slope stability. Zeitschrift für Geomorphologie Suppl., 115: 157–173.

    Google Scholar 

  • Preston, N.J. (2001): Geomorphic response to environmental change: the imprint of deforestation and agricultural land use on the contemporary landscape of the Pleiser Hügelland, Bonn, Germany. unpub. PhD thesis, Universität Bonn. 129 pp.

    Google Scholar 

  • Schmidt, Jo. (2001): The role of mass movements for slope evolution: conceptual approaches and model applications in the Bonn area. unpub. PhD, Universitaet Bonn.

    Google Scholar 

  • Schmidt, Jo. and Dikau, R. (1999): Extracting geomorphometric attributes and objects from digital elevation models-semantics, methods, future needs. In: Dikau, R., and Saurer, H. (eds.): GIS for Earth Surface Systems-Analysis and Modelling of the Natural Environment. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 153–173.

    Google Scholar 

  • Schmidt, Jo., Merz, B., and Dikau, R. (1998): Morphological structure and hydrological process modelling. Zeitschrift für Geomorphologie Suppl., 112: 55–66.

    Google Scholar 

  • Schmidt, Jü. (1991): A mathematical model to simulate rainfall erosion. Catena Suppl., 19: 101–109.

    Google Scholar 

  • Schumm, S.A. (1973): Geomorphic thresholds and complex response of drainage systems. In: Morisawa, M. (eds.): Fluvial Geomorphology. Suny, Binghamton: 299–310.

    Google Scholar 

  • Schumm, S.A. (1979): Geomorphic thresholds: the concept and its applications. Transactions of the Institute of British Geographers, 4: 485–515.

    Article  Google Scholar 

  • Schumm, S.A., and Lichty, R.W. (1965): Time, space, and causality in geomorphology. American Journal of Science, 263: 110–119.

    Article  Google Scholar 

  • Siakeu, J., and Oguchi, T. (2000): Soil erosion analysis and modelling: a review. Transactions of the Japanese Geomorphological Union, 21(4): 413–429.

    Google Scholar 

  • Trimble, S.W. (1993): The distributed sediment budget model and watershed management in the Paleozoic Plateau of the upper midwestern United States. Physical Geography, 14: 285–303.

    Google Scholar 

  • Trimble, S.W. (1999): Decreased rates of alluvial sediment storage in the Coon Creek basin, Wisconsin, 1975-93. Science, 285: 1244–1246.

    Article  Google Scholar 

  • Tucker, G.E., Lancaster, S.T., Gasparini, N.M., and Bras, R.L. (2001): The Channel-Hillslope Integrated Landscape Development Model (CHILD). In: Harmon, R.S., and Doe, W.W. (eds.): Landscape Erosion and Evolution Modeling. Kluwer Academic/Plenum Publishers, New York: 349–388.

    Google Scholar 

  • von Werner, M. (1995): GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten. unpublished PhD thesis, Freie Universität Berlin.

    Google Scholar 

  • Walling, D.E. (1983): The sediment delivery problem. Journal of Hydrology, 65: 209–237.

    Article  Google Scholar 

  • Wasson, R.J. (1996): Land Use and Climate Impacts on Fluvial Systems during the Period of Agriculture-Research Project and Implementation. PAGES Workshop Report Series 96-2. 51 pp.

    Google Scholar 

  • Willgoose, G.R., Bras, R.L., and Rodriguez-Iturbe, I. (1989): A Physically Based Channel Network and Catchment Evolution Model, TR322. Ralph M Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • Willgoose, G., Bras, R.L., and Rodriguez-Iturbe, I. (1991a): A coupled channel network growth and hillslope evolution model. 1. Theory. Water Resources Research, 27(7): 1671–1684.

    Article  Google Scholar 

  • Willgoose, G., Bras, R.L., and Rodriguez-Iturbe, I. (1991b): A coupled channel network growth and hillslope evolution model. 2. Nondimensionalisation and applications. Water Resources Research, 27(7): 1685–1696.

    Article  Google Scholar 

  • Wischmeier, W.H., and Smith, D.D. (1978): Predicting Rainfall Erosion Losses. USDA Agricultural Research Service Handbook 537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preston, N., Schmidt, J. (2003). Modelling sediment fluxes at large spatial and temporal scales. In: Lang, A., Dikau, R., Hennrich, K. (eds) Long Term Hillslope and Fluvial System Modelling. Lecture Notes in Earth Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36606-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36606-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00982-5

  • Online ISBN: 978-3-540-36606-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics