Skip to main content

Feynman path integrals and the corresponding method of stationary phase

  • Section I
  • Conference paper
  • First Online:
Feynman Path Integrals

Part of the book series: Lecture Notes in Physics ((LNP,volume 106))

Abstract

We give a review of our work concerning the mathematical definition of Feynman path integrals as particular cases of oscillatory integrals on infinite dimensional spaces, to which the finite dimensional theory (in particular the stationary phase method) is extended. Applications are given to quantum mechanics and quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. FEYNMAN, Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys. 20, 367–337 (1948).

    Google Scholar 

  2. S. ALBEVERIO, R. HØEGH-KROHN, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, 523, Springer, Berlin (1976).

    Google Scholar 

  3. S. ALBEVERIO, Mathematical Theory of Feynman Path Integrals, Acta Univ. Wratisl. 368 (1976), XIIth Winter School of Theoretical Physics in Karpacz (1975).

    Google Scholar 

  4. P.A.M. DIRAC, The Lagrangian in Quantum Mechanics, Phys. Zeitschr. d. Sovyetunion 3, no 1, 64–72 (1933). See also the references in [2], [3].

    Google Scholar 

  5. M. KAC, On a Distribution of Certain Wiener Functionals, Trans. Am. Math. Soc, 65, 1–13 (1949).

    Google Scholar 

  6. N. WIENER, Differential Space, J. Math. and Phys. 58, 131–174 (1923).

    Google Scholar 

  7. R.H. CAMERON, A Family of Integrals Serving to Connect the Wiener and Feynman Integrals, J. Math. and Phys. 39, 126–141 (1960).

    Google Scholar 

  8. J. FELDMAN, On the Schrödinger and Heat Equations, Trans. Am. Math. Soc. 10, 251–264 (1963).

    Google Scholar 

  9. D.G. BABBITT, A Summation Procedure for Certain Feynman Integrals, J. Math. Phys. 4, 36–41 (1963).

    Google Scholar 

  10. E. NELSON, Feynman Integrals and the Schrödinger Equation, J.Math.Phys. 5, 332–343 (1964). See also e.g. the references under [10], in Ref. [2].

    Google Scholar 

  11. S. ALBEVERIO, R. HØEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with Applications to the Classical Limit of Quantum Mechanics I, Inventiones Mathem. 40, 59–106 (1977).

    Google Scholar 

  12. S. ALBEVERIO, Ph. BLANCHARD, R. HØEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions II. (in preparation)

    Google Scholar 

  13. Someresults of [11] were also shortly described in [3]. For a different approach to the classical limit, using an extended definition of Feynman path integrals, see

    Google Scholar 

  14. A. TRUMAN, Feynman Path Integrals and Quantum Mechanics as h → 0, J. Math.Phys. 17, 1852–1362 (1977), and these Proceedings.

    Google Scholar 

  15. K. ITO, Generalized Uniform Measures in the Hilbertian Metric Space with their Application to the Feynman Path Integral, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, vol. II, part 1, 145–161 (1967).

    Google Scholar 

  16. C. DEWITT-MORETTE, Feynman's Path Integral. Definition without limiting Procedure, Commun.math.Phys. 28, 47–67 (1972); I. Linear and Affine Techniques, II. The Feynman-Green Function, Commun.math.Phys. 37, 63–81 (1974).

    Google Scholar 

  17. P. KREE, Théorie des distributions et calculs différentiels sur un espace de Banach, Séminaire P. Lelong, 15e année, Paris 1974–75. See also P.. Krée's contribution to these Proceedings.

    Google Scholar 

  18. For another approach using finitely additive complex measures, see e.g.

    Google Scholar 

  19. Yu. L. DALETSKII, Continuous Integrals Connected with Certain Differential Equations, Dokl. Ak. Nauk., 137, 268 (1961)

    Google Scholar 

  20. D.N. DUDIN, Generalized measures or distributions on Hilbert space, Trans. Mosc. M. Soc. 28, 133–157 (1973) (transl.).

    Google Scholar 

  21. A.TRUMAN, The classical action in nonrelativistic quantum mechanics, J.Math.Phys. 18,1499–1509 (1977). See also A.Truman in these Proceedings.

    Google Scholar 

  22. Ph. COMBE, G. RIDEAU, R. RODRIGUEZ, M. SIRUGUE-COLLIN, On the Cylindrical Approximation of the Feynman Path Integral, Rep. Math. Phys. 13, no 2, 279–294 (1978). For further references connected with this line of work, see also e.g.

    Google Scholar 

  23. I.M. GELFAND, A.M. YAGLOM, Integration in Functional Spaces, J.Math.Phys. 1, 48–69 (1960).

    Google Scholar 

  24. L. STREIT, An Introduction to Theories of Integration over Function Spaces, Acta Phys. Austr. Suppl. 2, 2–20 (1966). and e.g.

    Google Scholar 

  25. J. TARSKI, Definitions and Selected Applications of Feynman-Type Integrals, pp. 169–180, in “Functional Integration and its Applications”, A.M. Arthurs Edit., Oxford (1975). See also these Proceedings.

    Google Scholar 

  26. S. ALBEVERIO, R. HØEGH-KROHN, The Schrödinger Equation for the Relativistic Quantum Fields, in preparation.

    Google Scholar 

  27. K. BROCK, On the Feynman Integral, Aarhus University, Mathemat. Inst. Various Publ. Series, no 26 (Oct. 1976).

    Google Scholar 

  28. R. H. CAMERON, D.A. STORVICK, An Operator Valued Function Space Integral and a Related Integral Equation, J. Math. and Mech. 18, 517–552 (1968).

    Google Scholar 

  29. S.R.S. VARADHAN, unpublished.

    Google Scholar 

  30. K. GAWEDZKI, Construction of quantum mechanical dynamics by means of path integrals in phase space, Rep. Math. Phys. 6, 327–342 (1974)

    Google Scholar 

  31. W. GARCZYNSKI, Quantum Stochastic Processes and the Feynman Path Integral for a Single Spinless Particle, Repts. Math. Phys. 4, 21–46 (1973).

    Google Scholar 

  32. G.N. GESTRIN, On Feynman Integral, Izd. Kark. Univ. 12, 69–81 (1970).

    Google Scholar 

  33. G.W. JOHNSON, D.L. SKOUG, A Banach Algebra of Feynman Integrable Functionals with Applications to an Integral Equation formally equivalent to Schrödinger's Equation, J. Funct. Anal. 12, 129–152 (1973).

    Google Scholar 

  34. L.D. FADDEEV, P.P. KULISH, Quantization of Particle-Like Solutions in Field Theory, pp. 270–278, “Mathematical Problems in Theoretical Physics”, Proceedings, Rome 1977, Edts. G. Dell'Antonio, S. Doplicher, G. Jona-Lasinio, Lecture Notes in Physics 80, Springer, Berlin (1978).

    Google Scholar 

  35. R. HØEGH-KROHN, Relativistic Quantum Statistical Mechanics in Two-Dimensional Space-Time, Commun math. Phys. 38, 195–224 (1974).

    Google Scholar 

  36. V.P. MASLOV, The Quasi-Classical Asymptotic Solutions of some Problems in Mathematical Physics, I, J. Comp. Math. 1, 123–141 (1961)(transl.); II, J. Comp. Math. 1, 744–778 (1961) (transl.). See also e.g.

    Google Scholar 

  37. V.P. MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) (transl.).

    Google Scholar 

  38. L. HÖRMANDER, Fourier Integral Operators I, Acta Math. 127, 79–183 (1971).

    Google Scholar 

  39. J.J. DUISTERMAAT, Oscillatory Integrals, Lagrange Inversions and Unfolding of Singularities, Comm. Pure Appl. Math. 27, 207–281 (1974).

    Google Scholar 

  40. V.I. ARNOLD, Remarks on the Stationary Phase and Coxeter Numbers, Russ. Math.Surv. 28, 19–48 (1973).

    Google Scholar 

  41. J. LERAY, Solutions asymptotiques et groupe symplectique. In Fourier Integral Operators and Partial Differential Equations, pp. 73–97, in Lecture Notes in Mathematics 459, Springer, Berlin (1975). See also e.g. [38], [39].

    Google Scholar 

  42. I.N. BERNSHTEIN, Modules over a Ring of Differential Operators. Study of the Fundamental Solution of Equations with Constant Coefficients, Funct. Anal. and its Appl. 5 (2), 89–101 (1971).

    Google Scholar 

  43. B. MALGRANGE, Integrales asymptotiques et monodromie, Ann. Scient. Ec. Norm. Sup. 4e 5., 7, 405–430 (1974).

    Google Scholar 

  44. V. GUILLEMIN, S. STERNBERG, Geometric Asymptotics, Am. Math. Soc., Providence (1978).

    Google Scholar 

  45. See e.g. [7]-[10],[13]-[29].

    Google Scholar 

  46. V.P. MASLOV, A.M. CHEBOTAREV, Generalized Measures and Feynman Path Integrals, Teor. i Mat, Fyz. 28, 3, 291–306 (1976) (russ.).

    Google Scholar 

  47. R. HØEGH-KROHN, Partly Gentle Perturbations with Application to Perturbation by Annihilation. Creation Operators, Proc. Nat. Ac. Sci. 58, 2187–2192 (1967).

    Google Scholar 

  48. S. ALBEVERIO, R. HØEGH-KROHN, Uniqueness of the Physical Vacuum and the Wightman Functions in the Infinite Volume Limit for some Non Polynomial Interactions, Commun.math.Phys. 30, 171–200 (1973).

    Google Scholar 

  49. J.R. KLAUDER, Continuous Representations and Path Integrals, reviseted, Lecture Notes for the NATO Advanced Study Institute on Path Integrals and their Application, Antwerp, Belgium, July 17–30, 1977.

    Google Scholar 

  50. S. ALBEVERIO, Ph. BLANCHARD, R. HØEGH-KROHN, The Poisson formula and the ζ-function for the Schrödinger operators, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Albeverio Ph. Combe R. Høegh-Krohn G. Rideau M. Sirugue-Collin M. Sirugue R. Stora

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Albeverio, S., Hoegh-Krohn, R. (1979). Feynman path integrals and the corresponding method of stationary phase. In: Albeverio, S., et al. Feynman Path Integrals. Lecture Notes in Physics, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09532-2_65

Download citation

  • DOI: https://doi.org/10.1007/3-540-09532-2_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09532-3

  • Online ISBN: 978-3-540-35039-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics