Skip to main content

Optimization of Tube Potential for Radiation Dose Reduction in CT

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2284 Accesses

Abstract

Tube potential is an important scanning parameter that should be optimized in clinical CT in order to improve image quality or reduce radiation dose. The main benefit of lower tube potentials is the improved enhancement of contrast materials relative to higher tube potentials. However, there is usually increased image noise at lower tube potentials, especially for larger patient sizes. This tradeoff between contrast enhancement and noise requires that patient size and diagnostic task be carefully considered when selecting the optimal tube potential for radiation dose reduction. In addition, CT x-ray tube and generator limitations, scanning speed, and artifacts must also be considered. This chapter describes the basic principles of optimal tube potential for radiation dose reduction in CT and provides a summary of recent development on automatic selection of optimal tube potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Association of Physicists in Medicine. Size-Specific Dose Estimates (SSDE) (2011) In: Pediatric and Adult Body CT Examinations (Task Group 204).

    Google Scholar 

  • Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. Radiology 228:352–360

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Cody DD, Moxley DM, Krugh KT, O’Daniel JC, Wagner LK, Eftekhari F (2004) Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. AJR Am J Roentgenol 182:849–859

    PubMed  Google Scholar 

  • Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. Jama 298:317–323

    Article  PubMed  CAS  Google Scholar 

  • Ertl-Wagner BB, Hoffmann RT, Bruning R et al (2004) Multi-detector row CT angiography of the brain at various kilovoltage settings. Radiology 231:528–535

    Article  PubMed  Google Scholar 

  • Frush DP (2008) Pediatric abdominal CT angiography. Pediatr Radiol 38(Suppl 2):S259–266

    Article  PubMed  Google Scholar 

  • Frush DP, Herlong JR (2005) Pediatric thoracic CT angiography. Pediatr Radiol 35:11–25

    Article  PubMed  Google Scholar 

  • Funama Y, Awai K, Nakayama Y et al (2005) Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique: phantom study. Radiology 237:905–910

    Article  PubMed  Google Scholar 

  • Gies M, Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26:2235–2247

    Article  PubMed  CAS  Google Scholar 

  • Guimaraes LS, Fletcher JG, Harmsen WS et al (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742

    Article  PubMed  Google Scholar 

  • Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16:1165–1176

    Article  PubMed  Google Scholar 

  • Hough D, Yu L, Shiung M et al (2011) The lymphoma follow-up CT: age-appropriate individualization to decrease IV contrast dose or radiation dose. In: 97th Scientific assembly and meeting of the radiological society of North America, Chicago

    Google Scholar 

  • Huda W (2007) Radiation doses and risks in chest computed tomography examinations. Proc Am Thorac Soc 4:316–320

    Article  PubMed  Google Scholar 

  • Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    PubMed  CAS  Google Scholar 

  • Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26:2248–2253

    Article  PubMed  CAS  Google Scholar 

  • Kalender WA, Deak P, Kellermeier M, van Straten M, Vollmar SV (2009) Application- and patient size-dependent optimization of X-ray spectra for CT. Med Phys 36:993–1007

    Article  PubMed  Google Scholar 

  • Kalra MK, Maher MM, Toth TL et al (2004a) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657

    Article  Google Scholar 

  • Kalra MK, Maher MM, Toth TL et al (2004b) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  Google Scholar 

  • Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  • Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817

    Article  PubMed  Google Scholar 

  • Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. development and validation of a Monte Carlo program. Med Phys 38:397–407

    Article  PubMed  Google Scholar 

  • Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12

    Article  PubMed  Google Scholar 

  • Macari M, Spieler B, Kim D et al (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. Am J Roentgenol 194:27–32

    Article  Google Scholar 

  • McCollough CH (2005) Automatic exposure control in CT: are we done yet? Radiology 237:755–756

    Article  PubMed  Google Scholar 

  • Schindera ST, Nelson RC, Mukundan S Jr et al (2008) Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection—phantom study. Radiology 246:125–132

    Article  PubMed  Google Scholar 

  • Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907

    Article  PubMed  Google Scholar 

  • Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522

    Article  PubMed  Google Scholar 

  • Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  • Tubiana M, Feinendegen LE, Yang CC, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  PubMed  Google Scholar 

  • Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS (2007) Circle of Willis at CT angiography: dose reduction and image quality—reducing tube voltage and increasing tube current settings. Radiology 242:832–839

    Article  PubMed  Google Scholar 

  • Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243

    Article  PubMed  Google Scholar 

  • Yu L, Fletcher JG, Grant K et al (2011a) Automatic kV selection for radiation dose reduction in contrast-enhanced abdominal CT. In: 97th Scientific assembly and meeting of the radiological society of North America, Chicago

    Google Scholar 

  • Yu L, Fletcher JG, Vrtiska T et al (2011b) Automatic kV selection for radiation dose reduction in ct angiography. In: 97th Scientific assembly and meeting of the radiological society of North America, Chicago

    Google Scholar 

  • Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH (2011c) Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 31:835–848

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a research grant from Thrasher Research Fund. CHM and JGF have received research support from Siemens Healthcare. The authors would like to thank Ms. Kristina Nunez for her help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, L., Fletcher, J.G., McCollough, C.H. (2011). Optimization of Tube Potential for Radiation Dose Reduction in CT. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_490

Download citation

  • DOI: https://doi.org/10.1007/174_2011_490

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics