Skip to main content

Image Quality in CT: Challenges and Perspectives

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

This chapter discusses an overview of the complexities of CT image quality. It focuses primarily on the image quality of conventional CT scanners in common clinical use and includes some references to emerging new technologies and reconstruction methods. A review of the fundamental physics of a CT image is provided along with an explanation of why low kV scanning can be a useful dose reduction strategy if approached cautiously. Measurable image characteristics for spatial resolution, image noise and low contrast detectability are discussed along with a summary of image artifacts. Particular emphasis is given to CT noise and low contrast detectability, since these are the image quality characteristics most influenced by dose usage. Noise and detectability are the essence of the clinical dose dilemma: what do I need to detect and how much dose is necessary to be able to confidently detect its presence or absence?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAPM (2011) Report 204, Size Specific Dose Estimates (SSDE) in Pediatric and Adult Body Examinations

    Google Scholar 

  • Barrett HH, Myers KJ (2004) Foundations of image science. Wiley

    Google Scholar 

  • Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. Radiology 228:352–360

    Article  PubMed  Google Scholar 

  • Chakraborty D, Eckert M (1995) Quantitative versus subjective evaluation of mammography accreditation phantom images. Med Phys 22(2):133–143

    Article  PubMed  CAS  Google Scholar 

  • Chao EH, Toth TL, Bromberg NB, Williams EC, Fox SH, Carleton DA (2000) A statistical method of defining low contrast detectability. Radiology 217:162

    Google Scholar 

  • Chen CY, Chuang KS, Wu J, Lin HR, Li MJ (2001) Beam hardening correction for computed tomography images using a post reconstruction method and equivalent tissue concept. J Digit Imaging 14(2):54–61

    Article  PubMed  CAS  Google Scholar 

  • Flohr TG, Stierstorfer K, Süss C, Schmidt B, Primak AN, McCollough CH (2007) Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys 34(5):1712–1723

    Article  PubMed  CAS  Google Scholar 

  • Gagne R, Gallas B, Myers K (2006) Toward objective and quantitative evaluation of imaging systems using images of phantoms. Med Phys 33(1):83–95

    Article  PubMed  Google Scholar 

  • Hanson KM (1977) Detectability in the presence of computed tomographic reconstruction noise, SPIE vol 127 Optical instrumentation in medicine VI

    Google Scholar 

  • Hsieh J (2003) Computed Tomography principle design, artifacts, and recent advances. SPIE press, Bellingham

    Google Scholar 

  • ICRU Report 54 (1996) Medical Imaging—The assessment of image quality, April 1996

    Google Scholar 

  • Joseph PM, Spital RD (1982) The effects of scatter in X-ray computed tomography. Med Phys 9(4):464–472

    Article  PubMed  CAS  Google Scholar 

  • Judy P, Swensson R (1985) Detectibility of lesions of various sizes on CT images, SPIE Vol 535, Application of optimal instrumentation in medicine XIII

    Google Scholar 

  • Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  PubMed  CAS  Google Scholar 

  • Kalra MK et al (2003) Can noise reduction filters improve low-radiation-dose chest ct images? pilot study. Radiology

    Google Scholar 

  • Keat N (2003) Edyvean S. Low contrast detail detectability measurements on multi-slice CT scanners, RSNA

    Google Scholar 

  • La Rivière PJ, Pan X (2004) Sampling and aliasing consequences of quarter-detector offset use in helical CT. IEEE Trans Med Imaging 23(6):738–749

    Article  PubMed  Google Scholar 

  • Levison M, Restle F (1968) Invalid results from the method of constant stimuli. Percept Psychophys, 4, 121–122

    Google Scholar 

  • McCollough EC (1975) Photon attenuation in computed tomography. Med Phys, vol 2 No. 6, No7./Dec

    Google Scholar 

  • Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571

    Article  PubMed  Google Scholar 

  • Popescu LM (2007) Nonparametric ROC and LROC analysis. Med Phys 34(5):1556–1564

    Article  PubMed  Google Scholar 

  • Rohler DP, Toth TL, McNitt-Gray M, Maniyedath A, Izen SH (2010) Extended image quality index (ExIQx) relating image quality and dose over the full CT operating range and for all patient sizes, RSNA, SSK15-01, Physics (CT dose optimization)

    Google Scholar 

  • Rose A (1974) Vision: human and electronic. Plenum Press, New York

    Google Scholar 

  • Rose A (1948) The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am 38(2)

    Google Scholar 

  • Wagner RF, Brown DG, Pastel MS (1979) Application of information theory to the application of computed tomography. Med Phys 6(2)

    Google Scholar 

  • Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR, Shepard JO (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest ct: a pilot study, Radiology 259(2)

    Google Scholar 

  • Toth TL, Bromberg NB, Pan TS, Rabe J, Woloschek SJ, Li J, Seidenschnur GE (2000) A dose reduction X-ray beam positioning system for high-speed multislice CT scanners. Med Phys 27:2659

    Article  PubMed  CAS  Google Scholar 

  • Toth TL, Ge Z, Daly M (2007) The influence patient size, and patient centering on CT dose and noise. Med Phys 34(7):3093–3101

    Article  PubMed  Google Scholar 

  • Wilting J, Zwartkruis A, van Leeuwen M, Timmer J, Kamphuis A, Feldberg M (2001) A rational approach to dose reduction in CT: individualized scan protocols. Eur Radiol 11:2627–2632

    Article  PubMed  CAS  Google Scholar 

  • Yester MV, Barnes GT (1977) Geometrical limitations of computed tomography (CT) scanner resolution. Proc SPIE Appl Opt Instr In Med VI 127:296–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toth, T.L. (2012). Image Quality in CT: Challenges and Perspectives. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_482

Download citation

  • DOI: https://doi.org/10.1007/174_2011_482

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics