Skip to main content

Automatic Exposure Control in Multidetector-row CT

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2290 Accesses

Abstract

Automatic exposure control (AEC) is one of the most important aspects of radiation dose and image quality optimization for CT scanning. It is important to use this technique appropriately in order to obtain CT examinations with required image quality and/or radiation dose levels as improper use can lead to much lower or much higher radiation doses to patients undergoing CT examinations. There is similarity in basic principle behind different AEC techniques across different CT vendors but there are considerable differences between how the techniques are applied on platforms of different CT vendors. This chapter discusses various techniques of AEC available for use on clinical CT equipments.

Confusion now hath made his masterpiece!

William Shakespeare

Confusion is a word we have invented for an order which is not yet understood.”

Henry Miller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Althen JN (2005) Automatic tube-current modulation in CT—a comparison between different solutions. Radiat Prot Dosim 114:308–312

    Article  Google Scholar 

  • Brink M, de Lange F, Oostveen LJ, Dekker HM, Kool DR, Deunk J, Edwards MJ, van Kuijk C, Kamman RL, Blickman JG (2008) Arm raising at exposure-controlled multidetector trauma CT of thoracoabdominal region: higher image quality, lower radiation dose. Radiology 249:661–670

    Article  PubMed  Google Scholar 

  • Brisse HJ, Robilliard M, Savignoni A, Pierrat N, Gaboriaud G, De Rycke Y et al (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97:303–314

    Article  PubMed  CAS  Google Scholar 

  • Campbell J, Kalra MK, Rizzo SMR, Maher MM, Shepard J (2005) Scanning beyond anatomic limits of thorax in chest CT: findings, radiation dose and automatic tube current modulation. Am J Roentgenol 185:1525–1530

    Article  Google Scholar 

  • Chapman VM, Kalra MK, Grottkau BE, Albright M, Jaramillo D (2005) 16-Slice multidetector CT of the post-traumatic pediatric elbow: optimum parameters and associated radiation dose. Am J Roentgenol 185:516–521

    Google Scholar 

  • Cody D, McCollough CM (2011) American association of physicists in medicine (AAPM) working group on standardization of CT nomenclature and protocols. AAPM CT Lexicon version 1.1 8/31/2011. http://www.aapm.org/pubs/CTProtocols/documents/CTTerminologyLexicon_2011-08-31.pdf. Accessed 3 Nov 2011

  • Dalal T, Kalra MK, Rizzo SM, Schmidt B, Suess C, Flohr T et al (2005) Metallic prosthesis: technique to avoid increase in CT radiation dose with automatic tube current modulation in a phantom and patients. Radiology 236:671–675

    Article  PubMed  Google Scholar 

  • Giacomuzzi SM, Erckert B, Schopf T, Freund MC, Springer P, Dessl A et al (1996) The smart-scan procedure of spiral computed tomography: a new method for dose reduction. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 165:10–16

    Article  PubMed  CAS  Google Scholar 

  • Greess H, Wolf H, Baum U, Kalender WA, Bautz W (1999) Dosage reduction in computed tomography by anatomy-oriented attenuation-based tube-current modulation: the first clinical results. Rofo 170:246–250

    PubMed  CAS  Google Scholar 

  • Greess H, Baum U, Wolf H, Lell M, Nomayr A, Schmidt B et al (2001) Dose reduction in spiral-CT: detection of pulmonary coin lesions with and without anatomically adjusted modulation of tube current. Rofo 173:466–470

    Article  PubMed  CAS  Google Scholar 

  • Greess H, Nomayr A, Wolf H, Baum U, Lell M, Bowing B et al (2002) Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose). Eur Radiol 12:1571–1576

    Article  PubMed  Google Scholar 

  • Greess H, Lutze J, Nomayr A, Wolf H, Hothorn T, Kalender WA et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999

    Article  PubMed  CAS  Google Scholar 

  • Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  • Kalra MK, Prasad S, Saini S, Blake MA, Varghese J, Halpern EF et al (2002) Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. Am J Roentgenol 179:1101–1106

    Google Scholar 

  • Kalra MK, Maher MM, Prasad SR, Hayat MS, Blake MA, Varghese J et al (2003a) Correlation of patient weight and cross-sectional dimensions with subjective image quality at standard dose abdominal CT. Korean J Radiol 4:234–238

    Article  Google Scholar 

  • Kalra MK, Maher MM, Saini S (2003b) What is the optimum position of arms for acquiring scout images for whole-body CT with automatic tube current modulation? Am J Roentgenol 181:596–597

    Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA et al (2004a) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT et al (2004b) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657

    Article  Google Scholar 

  • Kalra MK, Maher MM, Kamath RS, Horiuchi T, Toth TL, Halpern EF et al (2004c) Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 233:241–249

    Article  Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004d) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–353

    Article  Google Scholar 

  • Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004e) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414

    Article  Google Scholar 

  • Kalra MK, Rizzo SM, Novelline RA (2005a) Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg Radiol 11:267–274

    Article  Google Scholar 

  • Kalra MK, Naz N, Rizzo SM, Blake MA (2005b) Computed tomography radiation dose optimization: scanning protocols and clinical applications of automatic exposure control. Curr Probl Diagn Radiol 34:171–181

    Article  Google Scholar 

  • Kopka L, Funke M, Breiter N, Hermann KP, Vosshenrich R, Grabbe E (1995) An anatomically adapted variation of the tube current in CT: studies on radiation dosage reduction and image quality. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 163:383–387

    Article  PubMed  CAS  Google Scholar 

  • Lehmann KJ, Wild J, Georgi M (1997) Clinical use of software-controlled X-ray tube modulation with “Smart-Scan” in spiral CT. Aktuelle Radiol 7:156–158

    PubMed  CAS  Google Scholar 

  • Lim HK, Lee KH, Kim SY, Kim KJ, Kim B, Lee H et al (2011) Does the amount of tagged stool and fluid significantly affect the radiation exposure in low-dose CT colonography performed with an automatic exposure control? Eur Radiol 21:345–352

    Article  PubMed  Google Scholar 

  • Mastora I, Remy-Jardin M, Delannoy V, Duhamel A, Scherf C, Suess C et al (2004) Multi-detector row spiral CT angiography of the thoracic outlet: dose reduction with anatomically adapted online tube current modulation and preset dose savings. Radiology 230:116–124

    Article  PubMed  Google Scholar 

  • Miyazaki O, Kitamura M, Masaki H, Nosaka S, Miyasaka M, Kashima K (2005) Current practice of pediatric MDCT in Japan: survey results of demographics and age-based dose reduction. Nippon Igaku Hoshasen Gakkai Zasshi 65:216–223

    PubMed  Google Scholar 

  • Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van Dijck X, Mussen E et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223

    Article  PubMed  Google Scholar 

  • Namasivayam S, Kalra MK, Pottala K, Waldrop S, Hudgins PA (2006) Optimization of z-axis automatic exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose. Am J Neuroradiol 27:2221–2225

    Google Scholar 

  • Papadakis AE, Perisinakis K, Oikonomou I, Damilakis J (2011) Automatic exposure control in pediatric and adult computed tomography examinations: can we estimate organ and effective dose from mean MAS reduction? Invest Radiol 46:654–662

    Article  PubMed  Google Scholar 

  • Paul J, Schell B, Kerl JM, Maentele W, Vogl TJ, Bauer RW (2011) Effect of contrast material on image noise and radiation dose in adult chest computed tomography using automatic exposure control: a comparative study between 16-, 64- and 128-slice CT. Eur J Radiol 79:e128–e132

    Article  PubMed  Google Scholar 

  • Poll LW, Cohnen M, Brachten S, Ewen K, Modder U (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174:1500–1505

    Article  PubMed  CAS  Google Scholar 

  • Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J, Blake MA et al (2010a) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45:202–210

    Article  Google Scholar 

  • Prakash P, Kalra MK, Digumarthy SR, Hsieh J, Pien H, Singh S et al (2010b) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34:40–45

    Article  Google Scholar 

  • Rizzo SM, Kalra MK, Maher MM, Blake MA, Toth TL, Saini S (2005) Do metallic endoprostheses increase radiation dose associated with automatic tube-current modulation in abdominal-pelvic MDCT? A phantom and patient study. Am J Roentgenol 184:491–496

    Google Scholar 

  • Rizzo S, Kalra MK, Schmidt B, Suess C, Flohr TG, Blake MA et al (2006) Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT scanning of the abdomen and pelvis. Am J Roentgenol 186:673–679

    Google Scholar 

  • Singh S, Kalra MK, Moore MA, Shailam R, Liu B, Toth TL et al (2009) Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 252:200–208

    Article  PubMed  Google Scholar 

  • Söderberg M, Gunnarsson M (2010) Automatic exposure control in computed tomography—an evaluation of systems from different manufacturers. Acta Radiol 51:625–634

    Article  PubMed  Google Scholar 

  • Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. Am J Roentgenol 181:331–334

    Google Scholar 

  • Terada M (2005) Optimization of image quality by CT scanner automatic exposure control systems. Nippon Hoshasen Gijutsu Gakkai Zasshi 61:1384–1386

    Google Scholar 

  • Wang ZJ, Chen KS, Gould R, Coakley FV, Fu Y, Yeh BM (2011) Positive enteric contrast material for abdominal and pelvic CT with automatic exposure control: what is the effect on patient radiation exposure? Eur J Radiol 79:e58–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannudeep K. Kalra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalra, M.K. (2011). Automatic Exposure Control in Multidetector-row CT. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_480

Download citation

  • DOI: https://doi.org/10.1007/174_2011_480

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics