Skip to main content

Application of Shielding in CT Radiation Dose Reduction

  • Chapter
Radiation Dose from Multidetector CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

In-plane shields have been shown to reduce CT radiation dose to some of the most radiosensitive organs. However, potential for artifacts and changes in attenuation numbers make their universal use controversial for radiation protection purposes. In this chapter, we discuss advantages and disadvantages of use of in-plane shielding for reducing radiation dose associated with CT scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beaconsfield T, Nicholson R, Thornton A, Al-Kutoubi A (1998) Would thyroid and breast shielding be beneficial in CT of the head? Eur Radiol 8(4):664–667

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Brnic Z et al (2003) Efficacy of breast shielding during CT of the head. Eur Radiol 13(11):2436–2440

    Article  PubMed  CAS  Google Scholar 

  • Catuzzo P et al (2010) Dose reduction in multislice CT by means of bismuth shields: results of in vivo measurements and computed evaluation. Radiol Med 115(1):152–169

    Article  PubMed  CAS  Google Scholar 

  • Chang KH et al (2010) Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations. Radiat Prot Dosimetry 138(4):382–388

    Article  PubMed  CAS  Google Scholar 

  • Chatterson LC, Leswick DA, Fladeland DA, Hunt MM, Webster ST (2011) Lead versus bismuth-antimony shield for fetal dose reduction at different gestational ages at CT pulmonary angiography. Radiology 260(2):560–579 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Cohnen M et al (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol 13(5):1148–1153

    PubMed  Google Scholar 

  • Colombo P et al (2004) Evaluation of the efficacy of a bismuth shield during CT examinations. Radiol Med 108(5–6):560–568

    PubMed  Google Scholar 

  • Coursey C et al (2008) Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol 190(1):W54–W61

    Article  PubMed  Google Scholar 

  • Dauer LT et al (2007) Radiation dose reduction at a price: the effectiveness of a male gonadal shield during helical CT scans. BMC Med Imaging 7:5

    Article  PubMed  Google Scholar 

  • Dobbs M, Ahmed R, Patrick LE (2011) Bismuth breast and thyroid shield implementation for pediatric CT. Radiol Manage 33(1):18–22 quiz 23–4

    PubMed  Google Scholar 

  • Doshi SK, Negus IS, Oduko JM (2008) Fetal radiation dose from CT pulmonary angiography in late pregnancy: a phantom study. Br J Radiol 81(968):653–658

    Article  PubMed  CAS  Google Scholar 

  • Fricke BL DL, Frush DP, Yoshizumi T, Varchena V, Poe SA, Lucaya J (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. Am J Roentgenol 180(2):407–411

    Google Scholar 

  • Fujibuchi T et al (2004) Shielding effect of protective seats during CT examination. Nippon Hoshasen Gijutsu Gakkai Zasshi 60(12):1730–1738

    Google Scholar 

  • Geleijns J et al (2006) Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol 16(10):2334–2340

    Article  PubMed  CAS  Google Scholar 

  • Geleijns J, Wang J, McCollough C (2010) The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol 40(11):1744–1747

    Article  PubMed  Google Scholar 

  • Heaney DE, Norvill CA (2006) A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng Sci Med 29(2):172–178

    Article  PubMed  CAS  Google Scholar 

  • Hein E et al (2002) Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose. Eur Radiol 12(7):1693–1696

    Article  PubMed  Google Scholar 

  • Hidajat N et al (1996) The efficacy of lead shielding in patient dosage reduction in computed tomography. Rofo 165(5):462–465

    Article  PubMed  CAS  Google Scholar 

  • Hohl C et al (2005) Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield. AJR Am J Roentgenol 184(1):128–130

    PubMed  Google Scholar 

  • Hohl C et al (2006) Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol 47(6):562–567

    Article  PubMed  CAS  Google Scholar 

  • Hopper KD (2002) Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin Ultrasound CT MR 23(5):423–427

    Article  PubMed  Google Scholar 

  • Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS (1997) The breast: in-plane X-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments. Radiology 205(3):853–858

    PubMed  CAS  Google Scholar 

  • Hopper KD et al (2001) Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol 22(6):1194–1198

    PubMed  CAS  Google Scholar 

  • Hurwitz LM, Yoshizumi T,, Reiman RE, Goodman PC, Paulson EK, Frush DP, Toncheva G, Nguyen G, Barnes L (2006) Radiation dose to the fetus from body MDCT during early gestation. AJR Am J Roentgenol 186(3):871–876

    Article  PubMed  Google Scholar 

  • Hurwitz LM et al (2006b) Radiation dose to the female breast from 16-MDCT body protocols. AJR Am J Roentgenol 186(6):1718–1722

    Article  PubMed  Google Scholar 

  • Iball GR, Kennedy EV, Brettle DS (2008) Modelling the effect of lead and other materials for shielding of the fetus in CT pulmonary angiography. Br J Radiol 81(966):499–503

    Article  PubMed  CAS  Google Scholar 

  • ICRP (2003) ICRP publication 90: biological effects after prenatal irradiation. ICRP, Oxford, UK

    Google Scholar 

  • Kalra MK et al (2004) Strategies for CT radiation dose optimization. Radiology 230(3):619–628

    Article  PubMed  Google Scholar 

  • Kalra MK et al (2009) In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 10(2):156–163

    Article  PubMed  Google Scholar 

  • Keil B et al (2008) Protection of eye lens in computed tomography—dose evaluation on an anthropomorphic phantom using thermo-luminescent dosimeters and Monte-Carlo simulations. Rofo 180(12):1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Kennedy EV, Iball GR, Brettle DS (2007) Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol 80(956):631–638

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Frush DP, Yoshizumi TT (2010) Bismuth shielding in CT: support for use in children. Pediatr Radiol 40(11):1739–1743

    Article  PubMed  Google Scholar 

  • Kojima H, Tsujimura A, Yabe H (2011) Usefulness of the adaptive dose shield for the infant CT. Nippon Hoshasen Gijutsu Gakkai Zasshi 67(1):57–61

    Article  Google Scholar 

  • Lee K et al (2010) Dose reduction and image quality assessment in MDCT using AEC (D-DOM & Z-DOM) and in-plane bismuth shielding. Radiat Prot Dosimetry 141(2):162–167

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Park ET, Cho PK, Seo HS, Je BK, Suh SI, Yang KS (2011) Comparative analysis of radiation dose and image quality between thyroid shielding and unshielding during CT examination of the neck. AJR Am J Roentgenol 196(3):611–615

    Article  PubMed  Google Scholar 

  • Leswick DA et al (2008) Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology 249(2):572–580

    Article  PubMed  Google Scholar 

  • Mayo JR, Aldrich J, Muller NL (2003) Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology 228(1):15–21

    Article  PubMed  Google Scholar 

  • McLaughlin DJ, Mooney RB (2004) Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol 59(5):446–450

    Article  PubMed  CAS  Google Scholar 

  • Mukundan S Jr et al (2007) MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. Am J Roentgenol 188(6):1648–1650

    Article  Google Scholar 

  • National Radiological Protection Board RCoR (1998) Diagnostic medical exposures: advice on exposure to ionising radiation during pregnancy. NRPB, Didcot, UK

    Google Scholar 

  • Neeman Z et al (2006) CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol 17(12):1999–2004

    Article  PubMed  Google Scholar 

  • Ngaile JE et al (2008) Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations. Radiat Prot Dosimetry 130(4):490–498

    Article  PubMed  CAS  Google Scholar 

  • Parker MS, Chung JK, Fatouros PP, Hoots JA, Kelleher NM, Benedict SH (2006) Reduction of radiation dose to the female breast: Preliminary data with a custom-designed tungsten-antimony composite breast shield. Journal of Applied Research 6(3):230–239

    Google Scholar 

  • Parker MS et al (2008) Absorbed radiation dose of the female breast during diagnostic multidetector chest CT and dose reduction with a tungsten-antimony composite breast shield: preliminary results. Clin Radiol 63(3):278–288

    Article  PubMed  CAS  Google Scholar 

  • Perisinakis K et al (2005) Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study. Med Phys 32(4):1024–1030

    Article  PubMed  Google Scholar 

  • Preston DL et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64

    Article  PubMed  CAS  Google Scholar 

  • Price R, Halson P, Sampson M (1999) Dose reduction during CT scanning in an anthropomorphic phantom by the use of a male gonad shield. Br J Radiol 72(857):489–494

    PubMed  CAS  Google Scholar 

  • Raissaki M et al (2010) Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol 40(11):1748–1754

    Article  PubMed  Google Scholar 

  • Romanowski CA, Underwood AC, Sprigg A (1994) Reduction of radiation doses in leg lengthening procedures by means of audit and computed tomography scanogram techniques. Br J Radiol 67(803):1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology as applied to curative radiotherapy. Cancer 22(4):767–778

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld SJ, Lee C, Berrington de Gonzalez A (2011) Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol) 23(4):244–250

    Article  CAS  Google Scholar 

  • Takada K, Kaneko J, Aoki K (2009) Breast dose reduction in female CT screening for lung cancer using various metallic shields. Nippon Hoshasen Gijutsu Gakkai Zasshi 65(12):1628–1637

    Article  CAS  Google Scholar 

  • The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  • Tsujino K et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55(1):110–115

    Article  PubMed  Google Scholar 

  • Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18(8):1674–1682

    Article  PubMed  Google Scholar 

  • Winer-Muram HT et al (2002) Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT. Radiology 224(2):487–492

    Article  PubMed  Google Scholar 

  • Yi A et al (2010) Optimal multidetector row CT parameters for evaluations of the breast: a phantom and specimen study. Acad Radiol 17(6):744–751

    Article  PubMed  Google Scholar 

  • Yilmaz MH et al (2007a) Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol 61(1):139–143

    Article  PubMed  Google Scholar 

  • Yilmaz MH et al (2007b) Female breast radiation exposure during thorax multidetector computed tomography and the effectiveness of bismuth breast shield to reduce breast radiation dose. J Comput Assist Tomogr 31(1):138–142

    Article  PubMed  Google Scholar 

  • Yousefzadeh DK, Ward MB, Reft C (2006) Internal barium shielding to minimize fetal irradiation in spiral chest CT: a phantom simulation experiment. Radiology 239(3):751–758

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannudeep K. Kalra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aran, S., Singh, S., Kalra, M.K. (2012). Application of Shielding in CT Radiation Dose Reduction. In: Tack, D., Kalra, M., Gevenois, P. (eds) Radiation Dose from Multidetector CT. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_450

Download citation

  • DOI: https://doi.org/10.1007/174_2011_450

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24534-3

  • Online ISBN: 978-3-642-24535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics