Skip to main content

Ischemic Heart Disease

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Ischemic heart disease (IHD) is the leading cause of morbidity and mortality in industrialized countries and poses an enormous financial burden on our society. As a consequence rational, evidence-based use of diagnostic and therapeutic means will be needed to prevent financial lapses and to guarantee an affordable medicine in the coming years. Magnetic resonance imaging is rapidly gaining widespread acceptance to investigate the full spectrum of patients presenting with symptoms of myocardial ischemia, ranging from stable coronary artery disease, over acute coronary syndrome, to the prediction of functional recovery post-revascularization in patients with chronic ischemic cardiomyopathy. In this chapter the MRI strategies to investigate IHD patients are discussed in detail, emphasizing the comprehensive approach converging information regarding myocardial perfusion, function and tissue characterization. Besides extensive illustration about the use of MRI, timelines for comprehensive MRI are provided for each IHD subgroup including standard and optional sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel–Aty H, Zagrosek A, Schulz–Menger J et al (2004) Delayed enhanced and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416

    Article  PubMed  Google Scholar 

  • Abdel–Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Raggi P (2010) Imaging of coronary atherosclerosis by computed tomography. Eur Heart J 31:1442–1448

    Article  PubMed  Google Scholar 

  • Adzamli IK, Blau M, Pfeffer MA et al (1993) Phosphonate-modified Gd-DTPA complexes. III. The detection of myocardial infarction by MRI. Magn Reson Med 29:505–511

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal NR, Martinez MW, Gersh BJ, Careonthaitawee P (2009) Role of cardiac MRI and nuclear imaging in cardiac resynchronization therapy. Nat Rev Cardiol 6:759–770

    Article  PubMed  Google Scholar 

  • Alderman EL, Stadius M (1992) The angiographic definitions of the bypass angioplasty revascularization investigation. Cor Art Dis 3:1189–1207

    Google Scholar 

  • Aletras AH, Tilak GS, Natanzon A et al (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging. Histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 113:1865–1870

    Article  PubMed  Google Scholar 

  • Aletras AH, Kellman P, Derbyshire A, Arai AE (2008) Acut2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the Heart. Magn Reson Med 59:229–235

    Article  PubMed  Google Scholar 

  • Al-Saadi N, Nagel E, Gross M et al (2000a) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:824–834

    Google Scholar 

  • Al-Saadi N, Nagel E, Gross M et al (2000b) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Amado LC, Gerber BL, Gupta SN et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44:2383–2389

    Article  PubMed  Google Scholar 

  • Andersen HR, Falk E, Nielsen D (1987) Right ventricular infarction: frequency, size and topography in coronary heart disease: a prospective study comprising 107 consecutive autopsies from a coronary care unit. J Am Coll Cardiol 10:1223–1232

    Article  PubMed  CAS  Google Scholar 

  • Arai AE (2007) False positive or true positive Troponin in patients presenting with chest pain but ‘normal’ coronary arteries: lessons from cardiac MRI. Eur Heart J 28:1175–1177

    Article  PubMed  Google Scholar 

  • Arheden H, Saeed M, Higgins CB et al (1999) Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTC-DTPA autoradiography in rats. Radiology 211:698–708

    PubMed  CAS  Google Scholar 

  • Asanuma T, Tanabe K, Ochiai K et al (1997) Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction. myocardial contrast echocardiographic study. Circulation 96:448–453

    PubMed  CAS  Google Scholar 

  • Assomull RG, Lyne JC, Keean N et al (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised Troponin, and unobstructed coronary arteries. Eur Heart J 28:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Baer FM, Smolarz K, Jungehulsing M et al (1992) Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 123:636–645

    Article  PubMed  CAS  Google Scholar 

  • Baer FM, Voth E, Theissen P et al (1994) Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 15:218–225

    PubMed  CAS  Google Scholar 

  • Baer FM, Voth E, Schneider C, Theissen P, Schicha H, Sechtem U (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F] Fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91:1006–1015

    PubMed  CAS  Google Scholar 

  • Baer FM, Theissen P, Crnac J et al (2000) Head to head comparison of dobutamine-transesophageal echocardiocardiography and dobutamine-magnetic resonance imaging for the detection of left ventricular functional recovery in patients with chronic coronary artery disease. Eur Heart J 21:981–991

    Article  PubMed  CAS  Google Scholar 

  • Baks T, van Geuns R-J, Biagini E et al (2006) Effects of primary angioplasty for acute mycardial infarction on early and late infarct and left ventricular wall characteristics. J Am Coll Cardiol 47:40–44

    Article  PubMed  Google Scholar 

  • Barbier CE, Bjerner T, Johansson L, Lind L, Ahlström H (2006) Myocardial scars more frequent than expected. Magnetic resonance imaging detects potential risk group. J Am Coll Cardiol 48:765–771

    Article  PubMed  Google Scholar 

  • Barkhausen J, Hunold P, Eggebrecht H et al (2002) Detection and characterization of intracardiac thrombi on MR imaging. AJR 179:1539–1544

    PubMed  Google Scholar 

  • Baroldi G, Silver MD, De Maria R, Parodi O, Pellegrini A (1997) Lipomatous metaplasia in the left ventricular scar. Can J Cardiol 13:65–71

    PubMed  CAS  Google Scholar 

  • Bashour TT, Mason D (1990) Myocardial hibernation and embalment. Am Heart J 119:706–708

    Article  PubMed  CAS  Google Scholar 

  • Basso C, Corbetti F, Silva C et al (2007) Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am J Cardiol 100:1322–1327

    Article  PubMed  Google Scholar 

  • Bauner KU, Muehling O, Wintersperger BJ, Winnik E, Reiser MF, Huber A (2007) Inversion recovery single-shot TurboFLASH for assessment of myocardial infarction at 3 Tesla. Invest Radiol 42:361–371

    Article  PubMed  Google Scholar 

  • Bax JJ, Visser FC, Poldermans D et al (2001) Time course of functional recovery of stunned and hibernating segments after surgical revascularization. Circulation 104:I314–I318

    Article  PubMed  CAS  Google Scholar 

  • Bayés de Luna A, Wagner G, Birnbaum Y et al (2006a) A new terminology for left ventricular walls and location of myocardial infarcts that present Q wave based on the standard of cardiac magnetic resonance imaging. A statement for healthcare professionals from a committee appointed by the International Society for Holter and Noninvasive electrocardiography. Circulation 114:1755–1760

    Article  PubMed  Google Scholar 

  • Bayés de Luna A, Cino JM, Pujadas S et al (2006b) Concordance of electrographic patterns and healed myocardial infarction location detected by cardiovascular magnetic resonance. Am J Cardiol 97:443–451

    Article  PubMed  Google Scholar 

  • Becker LC, Jeremy RW, Schaper J et al (1999) Ultrastructural assessment of myocardial necrosis occuring during ischemia and 3-h reperfusion in the dog. Am J Physiol 46:H243–H252

    Google Scholar 

  • Beek AM, Kühl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  • Beek AM, Bondarenko O, Afsharzada F, van Rossum AC (2009) Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magn Reson 11:6

    Article  PubMed  Google Scholar 

  • Bekkers SCAM, Backes WH, Kim RJ et al (2009) Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol 19:2904–2912

    Article  PubMed  Google Scholar 

  • Bekkers SCAM, Yazdani SK, Virmani R, Waltenberger J (2010) Microvascular obstruction. Underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol 55:1649–1660

    Article  PubMed  Google Scholar 

  • Beller GA (2000) Noninvasive assessment of myocardial viability. N Engl J Med 343:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Beller GA (2001) Coronary heart disease in the first 30 years of the 21st century: challenges and opportunities. Circulation 103:2428–2435

    PubMed  CAS  Google Scholar 

  • Berbari R, Kachenoura N, Frouin F, Herment A, Mousseaux E, Bloch I (2009) An automated quantification of the transmural myocardial infarct extent using cardiac DE-MR images. Conf Proc IEEE Eng Med Biol Soc 4403–4406

    Google Scholar 

  • Bernhardt P, Spiess J, Levenson B et al (2009) Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts. A multicenter study of an integrated cardiovascular magnetic resonance protocol. J Am Coll Cardiol Img 2000:1292–1300

    Google Scholar 

  • Berry C, Kellman P, Mancini C et al (2010) Magnetic resonance imaging delineates the ischemic aera at risk and myocardial salvage in patients with acute myocardial infarction. Circ Cardiovasc Imaging 3:527–535

    Article  PubMed  Google Scholar 

  • Bingham SE, Hachamovitch R (2011) Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation 123:1509–1518

    Article  PubMed  Google Scholar 

  • Blume U, Lockie T, Stehning C et al (2009) Interleaved T1 and T2 relaxation time mapping for cardiac applications. J Magn Reson Imaging 29:480–487

    Article  PubMed  Google Scholar 

  • Bodi V, Sanchis J, Lopez-Lereu MP et al (2005) Usefulness of a comprehensive cardiovascular magnetic resonance imaging assessment for predicting recovery of left ventricular wall motion in the setting of myocardial stunning. J Am Coll Cardiol 46:1747–1752

    Article  PubMed  Google Scholar 

  • Bodi V, Sanchis J, Guillem MS et al (2006) Analysis of Q-waves after infarction with body surface map: relationship with infarct size. Int J Cardiol 111:399–404

    Article  PubMed  Google Scholar 

  • Bodi V, Sanchis J, Lopez-Lereu MP et al (2007) Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol 50:1174–1179

    Article  PubMed  Google Scholar 

  • Bodi V, Sanchis J, Nunez J et al (2009) Prognostic value of a comprehensive cardiac magnetic resonance assessment soon after a first ST-segment elevation myocardial infarction. J Am Coll Cardiol Img 2:835–842

    Google Scholar 

  • Bodi V, Sanchis J, Mainar L et al (2010) Right ventricular involvement in anterior myocardial infarction: a translational approach. Cardiovasc Res 87:601–608

    Article  PubMed  CAS  Google Scholar 

  • Bogaert J, Francone M (2009) Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 11:14

    Article  PubMed  Google Scholar 

  • Bogaert J, Rademakers F (2001) Regional nonuniformity of the human left ventricle. A 3D MR myocardial tagging study. Am J Physiol 280:H610–H620

    CAS  Google Scholar 

  • Bogaert J, Maes A, Van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion. An important contribution to the improvement of regional and global left ventricular function. Circulation 99:36–43

    PubMed  CAS  Google Scholar 

  • Bogaert J, Bosmans H, Maes A et al (2000) Remote myocardial dysfunction after acute anterior myocardial infarction: impact of left ventricular shape on regional function. A magnetic resonance myocardial tagging study. J Am Coll Cardiol 35:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S (2007) Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol 17:2572–2580

    Article  PubMed  Google Scholar 

  • Bondarenko O, Beek AM, Twisk JW, Visser CA, van Rossum AC (2008) Time course of functional recovery after revascularization of hibernating myocardium: a contrast-enhanced cardiovascular magnetic resonance study. Eur Heart J 29:2000–2005

    Article  PubMed  Google Scholar 

  • Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG (2009) Reduced myocardial creatine kinase flux in human myocardial infarction. An in vivo phosphorus magnetic spectroscopy study. Circulation 119:1918–1924

    Article  PubMed  CAS  Google Scholar 

  • Brady TJ, Goldman MR, Pykett IL et al (1982) Proton nuclear magnetic resonance imaging of regionally ischemic canine hearts: effect of paramagnetic proton signal enhancement. Radiology 144:343–347

    PubMed  CAS  Google Scholar 

  • Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Bremerich J, Saeed M, Arheden H et al (2000) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530

    PubMed  CAS  Google Scholar 

  • Bresnahan GF, Roberts R, Shell WE, JJr Ross, Sobel BE (1974) Deleterious effects due to hemorrhage after myocardial infarction. Am J Cardiol 33:82–86

    Article  PubMed  CAS  Google Scholar 

  • Bruder O, Breuckmann F, Jensen C et al (2008) Prognostic impact of contrast-enhanced CMR early after acute ST segment elevation myocardial infarction (STEMI) in a regional STEMI network: results of the “Herzinfarktverbund Essen”. Herz 33:136–142

    Article  PubMed  Google Scholar 

  • Buda AJ, Zotz RJ, Gallagher KP (1987) The effect of inotropic stimulation on normal and ischemic myocardium after coronary occlusion. Circulation 76:163–172

    Article  PubMed  CAS  Google Scholar 

  • Camici PG (2007) Is the chest pain in cardiac syndrome X due to subendocardial ischemia? Eur Heart J 28:1539–1540

    Article  PubMed  Google Scholar 

  • Camici PG, Crea F (2007) Coronary microvascular dysfunction (2007). N Engl J Med 356:830–840

    Article  PubMed  CAS  Google Scholar 

  • Canby RC, Reeves RC, Evanochko WT et al (1987) Proton nuclear magnetic resonance relaxation times in severe myocardial ischemia. J Am Coll Cardiol 10:412–420

    Article  PubMed  CAS  Google Scholar 

  • Carlson M, Ubachs JFA, Hedström E, Heiberg E, Jovinge S, Arheden H (2009) Myocardium at risk after acute infarction in humans on cardiac magnetic resonance. Quantitative assessment during follow-up and validation with single-photon emission computed tomography. J Am Coll Cardiol Img 2:569–576

    Google Scholar 

  • Cerqueira M (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  • Charoenpanichkit C, Morgan TM, Hamilton CA et al (2010) Left ventricular hypertrophy influences cardiac prognosis in patients undergoing dobutamine cardiac stress testing. Circ Cardiovasc Imaging 3:392–397

    Article  PubMed  Google Scholar 

  • Cheng ASH, Pegg TJ, Karamitsos TD et al (2007) Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease. A comparison with 1.5-tesla. J Am Coll Cardiol 49:2440–2449

    Article  PubMed  Google Scholar 

  • Cheong BYC, Muthupillai R, Wilson JM et al (2009) Prognostic significance of delayed-enhancement magnetic resonance imaging. Survival of 857 patients with and without left ventricular dysfunction. Circulation 120:2069–2076

    Article  PubMed  Google Scholar 

  • Chiarella F, Santoro E, Domenicucci S et al (1998) Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol 81:822–827

    Article  PubMed  CAS  Google Scholar 

  • Choi SI, Choi SH, Kim ST et al (2000) Irreversibly damaged myocardium at MR imaging with a necrotic tissue-specific contrast agent in a cat model. Radiology 215:863–868

    PubMed  CAS  Google Scholar 

  • Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Cigarroa CG, de Filippi C, Brickner ME et al (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    PubMed  CAS  Google Scholar 

  • Cino JM, Carreras F, Cygankiewicz I et al (2006) Utility of contrast-enhanced cardiovascular magnetic resonance (CE-CMR) to assess how likely is an infarct to produce a typical ECG pattern. J Cardiovasc Magn Reson 8:335–344

    Article  PubMed  Google Scholar 

  • Cochet AA, Lorgis L, Lalande A et al (2009) Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur Radiol 19:2117–2126

    Article  PubMed  Google Scholar 

  • Cochet A, Lalande A, Lorgis L et al (2010) Prognostic value of microvascular damage determined by cardiac magnetic resonance in non ST-segment elevation myocardial infarction: comparison between first-pass and late gadolinium-enhanced images. Invest Radiol 45:725–732

    Article  PubMed  Google Scholar 

  • Coelho-Filho OR, Seabra LF, Mongeon F et al (2011) Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient's sex. J Am Coll Cardiol Img 4:850–861

    Google Scholar 

  • Cook SC, Ferketich AK, Raman SV (2009) Myocardial ischemia in asymptomatic adults with repaired aortic coarctation. Int J Cardiol 133:95–101

    Article  PubMed  Google Scholar 

  • Costa MA, Shoemaker S, Futamatsu H et al (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50:514–522

    Article  PubMed  Google Scholar 

  • Cox CJ (1967) Return to normal of the electrocardiogram after myocardial infarction. Lancet 1:1194–1197

    PubMed  CAS  Google Scholar 

  • Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99:284–291

    PubMed  CAS  Google Scholar 

  • Cullen JH, Horsfield MA, Reek CR et al (1999) A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 33:1386–1394

    Article  PubMed  CAS  Google Scholar 

  • Curry RC, Shash K, Nagurney JT et al (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118:837–844

    Article  Google Scholar 

  • Cury RC, Cattani CAM, Gabure LAG et al (2006) Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 240:39–45

    Article  PubMed  Google Scholar 

  • Dall’Armellina E, Morgan TM, Mandapaka S et al (2008) Prediction of cardiac events in patients with reduced left ventricular ejection fraction with dobutamine cardiovascular magnetic resonance assessment of wall motion score index. J Am Coll Cardiol 52:279–286

    Article  PubMed  Google Scholar 

  • Dall’Armellina E, Karamitsos TD, Neubauer S, Choudbury RP (2010) CMR for characterization of the myocardium in acute coronary syndromes. Nat Rev Cardiol 7:624–636

    Article  PubMed  Google Scholar 

  • de Roos A, Doornbos J, van der Wall EE, van Voorthuisen AE (1988) MR imaging of acute myocardial infarction: value of Gd-DTPA. AJR 150:531–534

    PubMed  Google Scholar 

  • de Roos A, Van Rossum AC, Van Der Wall E et al (1989) Reperfused and nonreperfused myocardial infarction: Diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 172:717–720

    PubMed  Google Scholar 

  • de Waha S, Desch S, Eitel I et al (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 31:2660–2668

    Article  PubMed  Google Scholar 

  • Dendale PAC, Franken RP, Waldmann GJ et al (1995) Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 130:134–140

    Article  PubMed  CAS  Google Scholar 

  • Dendale P, Franken PR, van der Wall EE, de Roos A (1997) Wall thickening at rest and contractile reserve early after myocardial infarction: correlation with myocardial perfusion and metabolism. Cor Art Dis 8:259–264

    Article  CAS  Google Scholar 

  • Desmet W, Bogaert J, Dubois C et al (2011) High-dose intracoronary adenosine for myocardial salvage in patients with acute ST-segment elevation myocardial infarction. Eur Heart J 32(7):867

    Article  PubMed  CAS  Google Scholar 

  • Detsky JS, Paul G, Dick AJ, Wright GA (2009) Reproducible classification of infarct heterogeneity using fuzzy clustering on multi-contrast delayed enhancement magnetic resonance imaging. IEEE Trans Med Imaging 28:1606–1614

    Article  PubMed  Google Scholar 

  • Di Bella G, Masci PG, Ganame J, Dymarkowski S, Bogaert J (2008) Images in cardiovascular medicine. Liquefaction necrosis of mitral annulus calcification: detection and characterization with cardiac magnetic resonance imaging. Circulation 117:e292–e294

    Article  PubMed  Google Scholar 

  • Donato R, Ganame J, Bogaert J (2009) Contrast-enhancing left ventricular apical thrombus. Eur Heart J 30:1977

    Article  PubMed  Google Scholar 

  • Dulce MC, Duerinckx AJ, Hartiala J et al (1993) MR imaging of the myocardium using nonionic contrast medium: signal-intensity changes in patients with subacute myocardial infarction. AJR Am J Roentgenol 160:963–970

    PubMed  CAS  Google Scholar 

  • Dymarkowski S, Ni Y, Miao Y et al (2002) Value of T2-weighted MRI early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted MRI and functional data from cine MRI. Invest Radiol 37(2):77–85

    Article  PubMed  Google Scholar 

  • Edelman RR, Wallner B, Singer A et al (1990) Segmented turboFLASH: method for breath-hold MR imaging of the liver with flexible contrast. Radiology 177:515–521

    PubMed  CAS  Google Scholar 

  • Eichstaedt HW, Felix R, Dougherty FC et al (1986) Langer M, Rutsch W, Schmutzler H. Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 9:527–535

    Article  PubMed  CAS  Google Scholar 

  • Eichstaedt HW, Felix R, Danne O et al (1989) Imaging of acute myocardial infarction by magnetic resonance tomography (MRT) using the paramagnetic relaxation substance gadolinium-DTPA. Cardiovasc Drugs Ther 3:779–788

    Article  PubMed  CAS  Google Scholar 

  • Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29:2651–2659

    Article  PubMed  Google Scholar 

  • Eitel I, Desch S, Fuernau G et al (2010) Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol 55:2470–2479

    Article  PubMed  Google Scholar 

  • Eitel I, Kubusch K, Strohm O et al (2011) Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation myocardial infarction. Circ Cardiovasc Imaging, 4:354--362

    Article  PubMed  Google Scholar 

  • Engblom H, Hedström E, Heiberg E, Wagner GS, Pahlm O, Arheden H (2005) Size and transmural extent of first-time reperfused myocardial infarction assessed by cardiac magnetic resonance can be estimated by 12-lead electrocardiogram. Am Heart J 150:920e1–920e9

    Google Scholar 

  • Engblom H, Carlsson MB, Hedström E et al (2007) The endocardial extent of reperfused first-time myocardial infarction is more predictive of pathologic Q waves than is infarct transmurality: a magnetic resonance imaging study. Clin Physiol Funct Imaging 27:101–108

    Article  PubMed  Google Scholar 

  • Engblom H, Hedström E, Heiberg E, Wagner GS, Pahlm O, Arheden H (2009) Rapid initial reduction of hyperenhanced myocardium after reperfused first myocardial infarction suggests recovery of the peri-infarction zone. One-year follow-up by MRI. Circ Cardiovasc Imaging 2:47–55

    Article  PubMed  Google Scholar 

  • Escolano J (2010) Long-term trends in public finances. Fiscal Affairs Department. International Monetary Fund. September 24, 2010, Tokyo Japan (www.imf.org/external/oap/pdf/julio.pdf)

  • Fedele F, Montesano T, Ferro-Luzzi M et al (1994) Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: role of magnetic resonance imaging. Am Heart J 128:484–489

    Article  PubMed  CAS  Google Scholar 

  • Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW (1987) The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation 75:980–987

    Article  PubMed  CAS  Google Scholar 

  • Fenchel M, Franow A, Stauder NI et al (2005) Myocardial perfusion after angioplasty in patients suspected of having single-vessel coronary artery disease: improvement detected at rest-stress first-pass perfusion MR imaging–initial experience. Radiology 237:67–74

    Article  PubMed  Google Scholar 

  • Fieno DS, Kim RJ, Chen E-L, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk. Distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  PubMed  CAS  Google Scholar 

  • Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W (1980) The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation 62:1274–1279

    PubMed  CAS  Google Scholar 

  • Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction. Radiology 218:703–710

    PubMed  CAS  Google Scholar 

  • Flacke S, Allen JS, Chia JM et al (2003) Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology 226:731–738

    Article  PubMed  Google Scholar 

  • Flett AS, Westwood MA, Davies LC, Mathur A, Moon JC (2009) The prognostic implications of cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2:243–250

    Article  PubMed  Google Scholar 

  • Foltz WD, Yang Y, Graham JJ, Detsky JS, Wright GA, Dick AJ (2006) MRI relaxation fluctuations in acute reperfused hemorrhagic infarction. Magn Reson Med 53:1311–1319

    Article  Google Scholar 

  • Foo TKF, Ho VB, Saranathan M et al (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235:1025–1030

    Article  PubMed  Google Scholar 

  • Francone M, Bucciarelli-Ducci C, Carbone I et al (2009) Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction. Insight from cardiovascular magnetic resonance. J Am Coll Cardiol 54:2145–2153

    Article  PubMed  Google Scholar 

  • Friedrich MG (2010) Myocardial edema–a new clinical entity? Nat Rev Cardiol 7:292–296

    PubMed  Google Scholar 

  • Friedrich MG, Abdel-Aty H, Taylor A et al (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581–1587

    Article  PubMed  Google Scholar 

  • Funaro S, La Torre G, Madonna M et al (2009) Incidence, determinants, and prognostic value of reverse left ventricular remodelling after primary percutaneous coronary intervention: results of the Acute Myocardial Infarction Contrast Imaging (AMICI) multicenter study. Eur Heart J 30:566–575

    Article  PubMed  Google Scholar 

  • Fuster V (1999) Epidemic of cardiovascular disease and stroke: the three main challenges. Circulation 99:1132–1137

    PubMed  CAS  Google Scholar 

  • Fuster V, Sanz J, Viles-Gonzalez JF, Rajagopalan S (2006) The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 3(1):S2–S7

    Article  PubMed  Google Scholar 

  • Galiuto L, Lombardo A, Maseri A et al (2003) Temporal evolution and functional outcome of no-reflow: sustained and spontaneously reversible patterns following successful coronary recanalization. Heart 89:731–737

    Article  PubMed  CAS  Google Scholar 

  • Ganame J, Messalli G, Dymarkowski S et al (2009) Impact of myocardial hemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 30:662–670

    Article  PubMed  Google Scholar 

  • Ganame J, Messalli G, Masci PG et al (2011) Time course of infarct healing and left ventricular remodelling in patients with reperfused ST-segment elevation myocardial infarction using comprehensive magnetic resonance imaging. Eur Radiol 21:693–701

    Article  PubMed  Google Scholar 

  • Garcia-Dorado D, Théroux P, Solares J et al (1990) Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion, and reocclusion. AJP 137:301–311

    PubMed  CAS  Google Scholar 

  • Garot J, Pascal O, Diéhold B et al (2002) Alterations of systolic left ventricular twist after acute myocardial infarction. Am J Physiol 282:H357–H362

    CAS  Google Scholar 

  • Garot J, Lima JAC, Gerber BL et al (2004) Spatially resolved imaging of myocardial function with strain-encoded MR: comparison with delayed contrast-enhanced MR imaging after myocardial infarction. Radiology 233:596–602

    Article  PubMed  Google Scholar 

  • Gebker R, Jahnke C, Manka R et al (2008) Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease. Circ Cardiovasc Imaging 1:122–130

    Article  PubMed  Google Scholar 

  • Gebker R, Jahnke C, Hucko T et al (2010a) Dobutamine stress magnetic resonance imaging for the detection of coronary artery disease in women. Heart 96:616–620

    Article  PubMed  CAS  Google Scholar 

  • Gebker R, Mirelis JG, Jahnke C et al (2010b) Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion magnetic resonance imaging during dobutamine stress. Circ Cardiovasc Imaging 3:507–514

    Article  PubMed  Google Scholar 

  • Geerse DA, Wu KC, Gorgels AP, Zimmet J, Wagner GS, Miller JM (2009) Comparison between contrast-enhanced magnetic resonance imaging and Selvester QRS scoring system in estimating changes in infarct size between the acute and chronic phases of myocardial infarction. Ann Noninvasive Electrocardiol 14:360–365

    Article  PubMed  Google Scholar 

  • Gerber BL, Rochitte CE, Melin JA et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    PubMed  CAS  Google Scholar 

  • Gerber BL, Rochitte CE, Bluemke DA et al (2001) Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation 104:998–1004

    Article  PubMed  CAS  Google Scholar 

  • Gerber BL, Raman SV, Nayak K et al (2008) Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 10:18

    Article  PubMed  Google Scholar 

  • Gheorghiade M, Sopko G, De Luca L et al (2006) Navigating the crossroads of coronary artery disease and heart failure. Circulation 114:1202–1213

    Article  PubMed  Google Scholar 

  • Gibbons RJ, Valeti US, Araoz PA, Jaffe AS (2004) The quantification of infarct size. J Am Coll Cardiol 44:1533–1542

    Article  PubMed  Google Scholar 

  • Giri S, Chung Y-C, Merchant A et al (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56–68

    Article  PubMed  Google Scholar 

  • Goldfarb JW, Roth M, Han J (2009) Myocardial fat deposition after left ventricular myocardial infarction: assessment by using MR water-fat separation imaging. Radiology 253:65–73

    Article  PubMed  Google Scholar 

  • Gould K (1978) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilatation: I. Physiologic basis and experimental validation. Am J Cardiol 41:267–278

    Article  PubMed  CAS  Google Scholar 

  • Gould KL (2009) Does coronary flow trump coronary anatomy? J Am Coll Cardiol Img 2:1009–1023

    Google Scholar 

  • Gropler RJ, Siegel BA, Sampathkumaran K et al (1992) Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19:989–997

    Article  PubMed  CAS  Google Scholar 

  • Haase J, Bayar R, Hackenbroch M (2004) Relationship between size of myocardial infarctions assessed by delayed contrast-enhanced MRI after primary PCI, biochemical markers, and time to intervention. J Interven Cardiol 17:367–373

    Article  Google Scholar 

  • Hallén J, Buser P, Schwitter J et al (2009) Relation of cardiac troponin I measurements at 24 and 48 hours to magnetic resonance-determined infarct size in patients with ST-elevation myocardial infarction. Am J Cardiol 104:1472–1477

    Article  PubMed  CAS  Google Scholar 

  • Hayat SA, Janardhanan R, Moon JC, Pennell DJ, Senior R (2006) Comparison between myocardial contrast echocardiography and single-photon emission computed tomography for predicting transmurality of acute myocardial infarction. Am J Cardiol 97:1718–1721

    Article  PubMed  Google Scholar 

  • Heidary S, Patel H, Chung J et al (2010) Quantitative tissue characterization of infarct core and border zone in patients with ischemic cardiomyopathy by magnetic resonance is associated with future cardiovascular events. J Am Coll Cardiol 55:2762–2768

    Article  PubMed  Google Scholar 

  • Hendel RC, Patel MR, Kramer CR et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 Appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  • Herijgers P, Laycock SK, Ni Y et al (1997) Localization and determination of infarct size by Gd-mesoporphyrin enhanced MRI in dogs. Int J Cardiac Imaging 13:499–507

    Article  CAS  Google Scholar 

  • Higgins CB, Herfkens R, Lipton MJ et al (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52:184–188

    Article  PubMed  CAS  Google Scholar 

  • Higginson LAJ, White F, Heggtveit HA, Sanders TM, Bloor CM, Covell JW (1982) Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation 65:62–69

    Article  PubMed  CAS  Google Scholar 

  • Hillenbrand HB, Kim RJ, Parker MA et al (2000) Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 102:1678–1683

    PubMed  CAS  Google Scholar 

  • Hochman JS, Choo H (1987) Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75:299–306

    Article  PubMed  CAS  Google Scholar 

  • Holman ER, van Jonbergen HP, van Dijkman PR et al (1993) Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 71:1036–1040

    Article  PubMed  CAS  Google Scholar 

  • Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223–253

    Article  PubMed  CAS  Google Scholar 

  • Hombach V, Grebe O, Merkle N et al (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26:549–557

    Article  PubMed  Google Scholar 

  • Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE (2006a) Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23:298–308

    Article  PubMed  Google Scholar 

  • Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE (2006b) Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 23:315–322

    Article  PubMed  Google Scholar 

  • Hsu LY, Ingkanisorn WP, Kellman P, Aletras AH, Arai AE (2006c) Quantitative myocardial infarction on delayed enhancement MRI. Part II: clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23:309–314

    Article  PubMed  Google Scholar 

  • Huang T-Y, Liu Y-J, Stemmer A, Poncelet BP (2007) T2 Measurement of the human myocardium using a T2-prepared transient-state trueFISP sequence. Magn Reson Med 57:960–966

    Article  PubMed  Google Scholar 

  • Huber AM, Schoenberg SO, Hayes C, Spannagl B, Engelmann MG, Franz WM, Reiser MF (2005) Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 237:854–860

    Article  PubMed  Google Scholar 

  • Huber A, Bauner K, Wintersperger BJ et al (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 tesla. Invest Radiol 41:148–153

    Article  PubMed  Google Scholar 

  • Huber A, Hayes C, Spannagl B et al (2007) Phase-contrast inversion recovery single-shot balanced steady-state free precession for detection of myocardial infarction during a single breathhold. Acad Radiology 14:1500–1508

    Article  Google Scholar 

  • Hundley WG, Hamilton CA, Clarke GD et al (1999) Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 99:3248–3254

    PubMed  CAS  Google Scholar 

  • Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM (2002) Magnetic resonance imaging determination of cardiac prognosis. Circulation 106:2328–2333

    Article  PubMed  Google Scholar 

  • Hundley WD, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 Expert consensus document on cardiovascular magnetic resonance. A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation 121:2462–2508

    Article  PubMed  Google Scholar 

  • Ibanez B, Prat-González S, Speidl WS et al (2007) Early metoprolol administration before coronary reperfusion results in increased myocardial salvage. Analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115:2909–2916

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim T, Nekolla SG, Hörnke M et al (2005) Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction. Comparison with single-photon emission tomography using Tc99m-sestamibi. J Am Coll Cardiol 45:544–552

    Article  PubMed  Google Scholar 

  • Ibrahim T, Bülow HP, Hackl T et al (2007) Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol 49:208–216

    Article  PubMed  Google Scholar 

  • Ibrahim T, Hackl T, Nekolla SG et al (2010) Acute myocardial infarction: serial cardiac MR imaging shows a decrease in delayed enhancement of the myocardium during the 1st week after reperfusion. Radiology 254:88–97

    Article  PubMed  Google Scholar 

  • Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259

    Article  PubMed  Google Scholar 

  • Ingkanisorn WP, Kwong RY, Bohme NS et al (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47:1427–1432

    Article  PubMed  Google Scholar 

  • Ito H, Tomooka T, Sakai N, Yu H et al (1992) Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85:1699–1705

    PubMed  CAS  Google Scholar 

  • Ito H, Maruyama A, Iwakura K et al (1996) Clinical implications of the ‘no-reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    PubMed  CAS  Google Scholar 

  • Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E (2006) Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology 241:718–728

    Article  PubMed  Google Scholar 

  • Jahnke C, Hetzer R, Komoda T, Fleck E, Paetsch I (2007a) Images in cardiovascular medicine. Intramural dissecting hemorrhage of the myocardium. Circulation 115:e457–e459

    Article  PubMed  Google Scholar 

  • Jahnke C, Nagel E, Gebker R (2007b) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776

    Article  PubMed  Google Scholar 

  • Jahnke C, Gebker R, Manka R, Schnackenburg B, Fleck E, Paetsch I (2010) Navigator-gated 3D blood oxygen level dependent CMR at 3.0T for detection of stress-induced myocardial ischemic reactions. J Am Coll Cardiol Img 3:375–384

    Google Scholar 

  • Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367:113–121

    Article  PubMed  Google Scholar 

  • Jennings RB, Hawkins HK, Lowe JE et al (1978) Relation between high-energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–214

    PubMed  CAS  Google Scholar 

  • Jenssen CJ, Jochims M, Hunold P et al (2010) Right ventricular involvement in acute left ventricular myocardial infarction: prognostic implications of MRI findings. AJR 194:592–598

    Article  Google Scholar 

  • John AS, Dreyfus GD, Pennell DJ (2005) Images in cardiovascular medicine. Reversible wall thinning in hibernation predicted by cardiovascular magnetic resonance. Circulation 111:e24–e25

    Article  PubMed  Google Scholar 

  • Johnston DL, Brady TJ, Ratner AV et al (1985) Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. Circulation 71:595–601

    Article  PubMed  CAS  Google Scholar 

  • Judd RM, Lugo-Olivieri CH, Arai M et al (1995a) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  • Judd RM, Atalay MK, Rottman GA et al (1995b) Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med 33:215–223

    Article  PubMed  CAS  Google Scholar 

  • Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958

    Article  PubMed  CAS  Google Scholar 

  • Jun SL, Chanani NK, Moore P, Higgins CB (2007) Images in cardiovascular medicine. Magnetic resonance imaging of a posttraumatic myocardial infarction and ventricular septal defect with a closure device in place. Circulation 115:e13–e15

    Article  PubMed  Google Scholar 

  • Kaandorp TA, Bax JJ, Schuijf JD et al (2004) Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 93:1461–1464

    Article  PubMed  Google Scholar 

  • Kaandorp TAM, Bax JJ, Lamb HJ et al (2005a) Which parameters on magnetic resonance imaging determine Q waves on the electrocardiogram. Am J Cardiol 95:925–929

    Article  PubMed  Google Scholar 

  • Kaandorp TAM, Lamb HJ, van der Wall EE, de Roos A, Bax JJ (2005b) Cardiovascular MR to assess myocardial viability in chronic ischaemic LV dysfunction. Heart 91:1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Karamitsos T, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54:1407–1424

    Article  PubMed  Google Scholar 

  • Keeley EC, Hillis LD (1996) Left ventricular mural thrombus after acute myocardial infarction. Clin Cardiol 19:83–86

    Article  PubMed  CAS  Google Scholar 

  • Kelle S, Hamdan A, Schnackenburg B et al (2008) Dobutamine stress cardiovascular magnetic resonance at 3 Tesla. J Cardiovasc Magn Reson 10:44

    Article  PubMed  CAS  Google Scholar 

  • Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54:1770–1777

    Article  PubMed  Google Scholar 

  • Kellman P, Arai AE, McVeigh ER et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383

    Article  PubMed  Google Scholar 

  • Kellman P, Dyke CK, Aletras AH et al (2004) Artifact suppression in imaging of myocardial infarction using B1-weighted phased-array combined phase-sensitive inversion recovery dagger. Magn Reson Med 51(2):408–412

    Article  PubMed  Google Scholar 

  • Kellman P, Aletras AH, Mancini C, McVeigh ER, Arai AE (2007) T2-Prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn Reson Med 57:891–897

    Article  PubMed  Google Scholar 

  • Kellman P, Hernando D, Shah S et al (2009) Multi-echo Dixon fat and water separation method for detecting fibro-fatty infiltration in the myocardium. Magn Reson Med 61:215–221

    Article  PubMed  CAS  Google Scholar 

  • Kim RJ, Chen EL, Lima JA et al (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    PubMed  CAS  Google Scholar 

  • Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  • Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514

    Article  PubMed  Google Scholar 

  • Kim RJ, Albert TSE, Wible JH et al (2008) Performance of delayed-enhancement magnetic resonance imaging with Gadoversetamide contrast for the detection and assessment of myocardial infarction. An international, multicenter, double-blinded, randomized trial. Circulation 117:629–637

    Article  PubMed  Google Scholar 

  • Kim HW, Farzaneh A, Kim RJ (2010) Cardiovascular magnetic resonance in patients with myocardial infarction. Current and emerging applications. J Am Coll Cardiol 55:1–16

    Article  Google Scholar 

  • Kinch J, Ryan T (1994) Right ventricular Infarction. N Engl J Med 330:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Kino A, Zuehlsdorff S, Sheehan JJ, Weale PJ, Carroll TJ, Jerecic R, Carr JC (2009) Three-dimensional phase-sensitive inversion-recovery turbo FLASH sequence for the evaluation of left ventricular myocardial scar. AJR 193:W381–W388

    Article  PubMed  Google Scholar 

  • Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging. Comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  • Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E (2007) Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 9:653–658

    Article  PubMed  Google Scholar 

  • Klem I, Heitner JF, Shah DJ et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638

    Article  PubMed  Google Scholar 

  • Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning and their clinical implications. Circulation 104:2981–2989

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed  CAS  Google Scholar 

  • Klumpp B, Fenchel M, Hoevelborn T, Helber U, Scheule A, Claussen C, Miller S (2006) Assessment of myocardial viability using delayed enhancement magnetic resonance imaging 3.0 Tesla. Invest Radiol 41:661–667

    Article  PubMed  Google Scholar 

  • Knuesel PR, Nanz D, Wyss C et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108(9):1095–1100

    Article  PubMed  Google Scholar 

  • Konen E, Merchant N, Gutierrez C et al (2005) True versus false left ventricular aneurysm: differentiation with MR imaging–initial experience. Radiology 236:65–70

    Article  PubMed  Google Scholar 

  • Korosoglou G, Futterer S, Humpert PM et al (2009a) Strain-encoded cardiac MR during high-dose dobutamine stress testing: comparison to cine imaging and to myocardial tagging. J Magn Reson Imaging 29:1053–1061

    Article  PubMed  Google Scholar 

  • Korosoglou G, Lossnitzer D, Schellberg D et al (2009b) Strain-encoded cardiac magnetic resonance imaging as an adjunct for dobutamine stress testing. Incremental value to conventional wall motion analysis. Circ Cardiovasc Imaging 2:132–140

    Article  PubMed  Google Scholar 

  • Korosoglou G, Elhmidi Y, Steen H et al (2010a) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1, 493 consecutive patients. Assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Korosoglou G, Lehrke S, Wochele A et al (2010b) Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. J Am Coll Cardiol Img 3:361–371

    Google Scholar 

  • Kraitchman DL, Sampath S, Castillo E et al (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107:2025–2030

    Article  PubMed  Google Scholar 

  • Kramer CM, Hundley WG (2010) Steadily straining toward clinical utility. Real-time quantitative CMR of myocardial deformation during stress. J Am Coll Cardiol Img 3:372–374

    Google Scholar 

  • Kramer CM, Lima JA, Reichek N et al (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88:1279–1288

    PubMed  CAS  Google Scholar 

  • Kramer CM, Rogers WJ, Theobald TM et al (1996a) Remote noninfarcted regional dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 94:660–666

    PubMed  CAS  Google Scholar 

  • Kramer CM, Ferrari VA, Rogers WJ et al (1996b) Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol 27:211–217

    Article  PubMed  CAS  Google Scholar 

  • Kramer CM, Rogers WJ, Theobald TM et al (1997) Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. J Am Coll Cardiol 30:1625–1632

    Article  PubMed  CAS  Google Scholar 

  • Kramer CP, Rogers WJ, Mankad S, Theobald TM, Pakstis DL, Hu Y-L (2000) Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. J Am Coll Cardiol 36:1835–1840

    Article  PubMed  CAS  Google Scholar 

  • Krittayaphong R, Maneesai A, Chaithiraphan V, Saiviroonporn P, Chaipet O, Udompunturak S (2009) Comparison of diagnostic and prognostic value of different electrocardiographic criteria to delayed-enhancement magnetic resonance imaging for healed myocardial infarction. Am J Cardiol 103:464–470

    Article  PubMed  Google Scholar 

  • Kühl HP, Beek AM, van der Weerdt AP et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348

    Article  PubMed  Google Scholar 

  • Kühl HP, Papavasilliu TS, Beek AM et al (2004) Myocardial viability: rapid assessment with delayed contrast-enhanced MR imaging with three-dimensional inversion-recovery prepared pulse sequence. Radiology 230:576–582

    Article  PubMed  Google Scholar 

  • Kühl HP, van der Weerdt A, Beek A, Visser F, Hanrath P, van Rossum A (2006) Relation of end-diastolic wall thickness and the residual rim of viable myocardium by magnetic resonance imaging to myocardial viability assessed by fluorine-18 deoxyglucose positron emission tomography. Am J Cardiol 97:452–457

    Article  PubMed  Google Scholar 

  • Kuijpers D, Janssen CHC, van Dijkman PRM, Oudkerk M (2004a) Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:1823–1828

    PubMed  Google Scholar 

  • Kuijpers D, van Dijkman PRM, Janssen CHC, Vliegenthart R, Zijlstra F, Oudkerk M (2004b) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:2046–2052

    Article  PubMed  Google Scholar 

  • Kuijpers D, Yiu K, van Dijkman PRM et al (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107:1592–1597

    Article  PubMed  Google Scholar 

  • Kumar A, Abdel-Aty H, Kriedemann I et al (2006) Contrast-enhanced cardiovascular magnetic resonance imaging of right ventricular infarction. J Am Coll Cardiol 48:1969–1976

    Article  PubMed  Google Scholar 

  • Kurita T, Sakuma H, Onishi K et al (2009) Regional myocardial perfusion reserve determined using myocardial perfusion magnetic resonance imaging showed a direct correlation with coronary flow velocity reserve by Doppler flow wire. Eur Heart J 30:444–452

    Article  PubMed  Google Scholar 

  • Kwon DH, Halley CM, Carrigan TP et al (2009) Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function. A delayed hyperenhancement cardiac magnetic resonance study. J Am Coll Cardiol Img 2:34–44

    Google Scholar 

  • Kwong RY, Schussheim AE, Rekhraj S et al (2003) Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107:531–537

    Article  PubMed  Google Scholar 

  • Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms or coronary artery disease. Circulation 113:2733–2743

    Article  PubMed  Google Scholar 

  • Kwong RY, Sattar H, Wu H et al (2008) Incidence and prognositic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118:1011–1020

    Article  PubMed  Google Scholar 

  • Lamfers EJP, Hooghoudt TEH, Hertzberger DP, Schut A, Stolwijk PWJ, Verheugt FWA (2003) Abortion of acute ST-segment elevatuion myocardial infarction after reperfusion: incidence, patients’ characteristics, and prognosis. Heart 89:496–501

    Article  PubMed  CAS  Google Scholar 

  • Lanza GA, Buffon A, Sestito A et al (2008) Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol 51:466–472

    Article  PubMed  Google Scholar 

  • Larose E (2006) Below radar. Contributions of cardiac magnetic resonance to the understanding of myonecrosis after percutaneous coronary intervention. Circulation 114:620–622

    Article  PubMed  Google Scholar 

  • Larose E, Ganz P, Reynolds G, Dorbala S, Di Carli MR, Brown KA, Kwong RY (2007) Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol 49:855–862

    Article  PubMed  Google Scholar 

  • Larose E, Rodés-Cabau J, Pibarot P et al (2010) Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction. J Am Coll Cardiol 55:2459–2469

    Article  PubMed  Google Scholar 

  • Laster SB, Shelton TJ, Barzilai B, Goldstein JA (1993) Determinants of the recovery of right ventricular performance following experimental chronic right coronary artery occlusion. Circulation 88:696–708

    PubMed  CAS  Google Scholar 

  • Laster SB, Ohnishi Y, Saffitz JE, Goldstein JA (1994) Effects of reperfusion on ischemic right ventricular dysfunction. Disparate mechanisms of benefit related to duration of ischemia. Circulation 90:1398–1409

    PubMed  CAS  Google Scholar 

  • Lauterbur PC, Dias MM, Rudin AM (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In: Dutton PL, Leigh JS, Scarpa A (eds) International symposium on frontiers of biological energetics of electrons to tissues. Academic, New York, pp 752–759

    Google Scholar 

  • Lee JT, Ideker RE, Reimer KA (1981) Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 64:526–534

    Article  PubMed  CAS  Google Scholar 

  • Lee DC, Simonetti OP, Harris KR et al (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110:58–65

    Article  PubMed  Google Scholar 

  • Lim CCS, van Gaal WJ, Testa L et al (2011) With the “Universal Definition”, measurement of creatine kinase-myocardial band rather than troponin allows more accurate diagnosis of periprocedural necrosis and infarction after coronary intervention. J Am Coll Cardiol 57:653–661

    Article  PubMed  CAS  Google Scholar 

  • Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    PubMed  CAS  Google Scholar 

  • Liu X, Huang Y, Pokreisz P et al (2007) Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 50:808–817

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  • Locca D, Bucciarelli-Ducci C, Ferrante G et al (2010) New universal definition of myocardial infarction. Applicable after complex percutaneous coronary interventions? J Am Cardiol Intv 3:950–958

    Google Scholar 

  • Lockie T, Nagel E, Redwood S, Plein S (2009) The use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation 119:1671–1681

    Article  PubMed  Google Scholar 

  • Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251

    Article  CAS  Google Scholar 

  • Lotan CS, Miller SK, Bouchard A et al (1990) Detection of intramyocardial hemorrhage using high-field proton (1H) nuclear magnetic resonance imaging. Cathet Cardiovasc Diagn 20:205–211

    Article  PubMed  CAS  Google Scholar 

  • Lotan CS, Bouchard A, Cranney CB, Bishop SP, Pohost GM (1992) Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5T. Circulation 86:1018–1025

    PubMed  CAS  Google Scholar 

  • Lubbers DD, Janssen CHC, Kuijpers D et al (2008) The addtional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia. Int J Cardiovasc Imaging 24:69–76

    Article  PubMed  Google Scholar 

  • Lücke C, Schindler K, Lehmkuhl L et al (2010) Prevalence and functional impact of lipomatous metaplasia in scar tissue following myocardial infarction evaluated by MRI. Eur Radiol 20:2074–2083

    Article  PubMed  Google Scholar 

  • Maes A, Flameng W, Nuyts J et al (1994) Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90:735–745

    PubMed  CAS  Google Scholar 

  • Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  CAS  Google Scholar 

  • Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis. A comparison to histology and molecular biology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  • Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  • Manka R, Vitanis V, Boesiger P, Flammer AJ, Plein S, Kozerke S (2010) Clinical feasibility of accelerated, high signal resolution myocardial perfusion imaging. J Am Coll Cardiol Img 3:710–717

    Google Scholar 

  • Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  • Marie PY, Angioï M, Carteaux JP et al (2001) Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol 37:825–831

    Article  PubMed  CAS  Google Scholar 

  • Martin TN, Groenning BA, Murray HM et al (2007) ST-segment deviation analysis of the admission 12-lead electrocardiogram as an aid to early diagnosis of acute myocardial infarction with a cardiac magnetic imaging gold standard. J Am Coll Cardiol 50:1021–1028

    Article  PubMed  Google Scholar 

  • Masci PG, Dymarkowski S, Bogaert J (2007) Images in cardiovascular medicine. Papillary muscle infarction after cardiopulmonary resuscitation. Circulation 116:e308–e309

    Article  PubMed  Google Scholar 

  • Masci PG, Dymarkowski S, Rademakers FE, Bogaert J (2009) Determination of regional ejection fraction in patients with myocardial infarction by using late gadolinium enhancement and cine MR: feasibility study. Radiology 250:50–60

    Article  PubMed  Google Scholar 

  • Masci PG, Ganame J, Strata E et al (2010a) Myocardial salvage by CMR correlates with LV remodeling and early ST-segment resolution in acute myocardial infarction. J Am Coll Cardiol Img 3:45–51

    Google Scholar 

  • Masci PG, Francone M, Desmet W et al (2010b) Right ventricular ischemic injury in patients with acute ST-segment elevation myocardial infarction. Characterization with cardiovascular magnetic resonance. Circulation 122:1405–1412

    Article  PubMed  Google Scholar 

  • Matheijssen NA, de Roos A, van der Wall EE et al (1991) Acute myocardial infarction: comparison of T2-weighted and T1-weighted gadolinium-DTPA enhanced MR imaging. Magn Reson Med 17:460–469

    Article  PubMed  CAS  Google Scholar 

  • Mather AN, Lockie T, Nagel E et al (2009) Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson 11:33–41

    Article  PubMed  Google Scholar 

  • Mather AN, Fairbairn TA, Ball SG, Greenwood JP, Plein S (2010) Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk. Heart 97:463–1459

    Google Scholar 

  • Matsumura K, Jeremy RW, Schaper J et al (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97:795–804

    PubMed  CAS  Google Scholar 

  • McCrohon JA, Moon JCC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  PubMed  CAS  Google Scholar 

  • McNamara MT, Wesbey GE, Brasch RC et al (1985) Magnetic resonance imaging of acute myocardial infarction using a nitroxyl spin label (PCA). Invest Radiol 20:591–595

    Article  PubMed  CAS  Google Scholar 

  • McNamara MT, Tscholakoff D, Revel D et al (1986) Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 158:765–769

    PubMed  CAS  Google Scholar 

  • Meijs MFL, Bots ML, Cramer MJM et al (2009) Unrecognised myocardial infarction in subjects at high vascular risk: prevalence and determinants. Heart 95:728–732

    Article  PubMed  CAS  Google Scholar 

  • Mewton N, Bonnefoy E, Revel D, Ovize M, Kirkorian G, Croisille P (2009) Presence and extent of cardiac magnetic resonance microvascular obstruction in reperfused non-ST-elevated myocardial infarction and correlation with infarct size and myocardial enzyme release. Cardiology 113:50–58

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Strach K, Thomas D et al (2008) High-resolution myocardial stress perfusion at 3T in patients with suspected coronary artery disease. Eur Radiol 18:226–233

    Article  PubMed  Google Scholar 

  • Mikami Y, Sakuma H, Nagata M et al (2009) Relationship between signal intensity on T2-weighted MR images and presence of microvascular obstruction in patients with acute myocardial infarction. AJR 193:W321–W326

    Article  PubMed  Google Scholar 

  • Mollet NR, Dymarkowski S, Volders W et al (2002) Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 106:2873–2876

    Article  PubMed  Google Scholar 

  • Moon JCC, Perez De Arenaza D et al (2004) The pathologic basis of Q-wave and non-Q-wave myocardial infarction. A cardiovascular magnetic resonance study. J Am Coll Cardiol 44:554–560

    Article  PubMed  Google Scholar 

  • Morton G, Plein S, Nagel E (2010a) Noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:827–828

    PubMed  Google Scholar 

  • Morton G, Schuster A, Perera D, Nagel E (2010b) Cardiac magnetic resonance imaging to guide complex revascularization in stable coronary artery disease. Eur Heart J 31:2209–2216

    Article  PubMed  Google Scholar 

  • Moustakidis P, Maniar HS, Cupps BP et al (2002) Altered left ventricular geometry changes the border zone temporal distribution of stress in an experimental model of left ventricular aneurysm: a finite element model study. Circulation 106(I):I-168–I-175

    Google Scholar 

  • Müllner M, Oschatz E, Sterz F et al (1998) The influence of chest compressions and external defibrillation on the release of creatine kinase-MB and cardiac troponin T in patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 38:99–105

    Article  PubMed  Google Scholar 

  • Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785

    Article  PubMed  Google Scholar 

  • Myers GB, Howard A, Klein M, Stofer BE (1948a) Correlation of the electrocardiographic and pathologic findings in anteroseptal infarction. Am Heart J 36:535–575

    Article  PubMed  CAS  Google Scholar 

  • Myers GB, Howard A, Stofer BE (1948b) Correlation of the electrocardiographic and pathologic findings in lateral infarction. Am Heart J 37:374–417

    Article  Google Scholar 

  • Myers GB, Howard A, Stofer BE (1948c) Correlation of the electrocardiographic and pathologic findings in posterior infarction. Am Heart J 38:547–582

    Article  Google Scholar 

  • Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    PubMed  CAS  Google Scholar 

  • Nagel E, Klein C, Paetsch I et al (2003) Magnetic resonance perfusion measurement for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  • Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease. A meta-analysis. J Am Coll Cardiol 50:1343–1353

    Article  PubMed  Google Scholar 

  • Natanzon A, Aletras AH, Hsu L-Y, Arai AE (2005) Determining canine myocardial area at risk with manganese-enhanced MR imaging. Radiology 236:589–866

    Article  Google Scholar 

  • Neill W, Ingwall J, Andrews E et al (1986) Stabilization of the derangement in adenosine triphosphate metabolism during sustained, partial ischemia in the dog heart. J Am Coll Cardiol 8:894–900

    Article  PubMed  CAS  Google Scholar 

  • Neubauer S (2007) The failing heart–an engine running out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  • Ni Y, Marchal G, Yu J et al (1995) Localization of metalloporphyrin induced “specific” enhancement in experimental liver tumors: comparison of magnetic resonance imaging, microangiographic and histologic findings. Acad Radiol 2:687–699

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Petré C, Miao Y et al (1997) Magnetic resonance imaging–histomorphologic correlation studies on paramagnetic metalloporphyrins in rat models of necrosis. Invest Radiol 32:770–779

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Pislaru C, Bosmans H et al (1998) Validation of intracoronary delivery of metalloporphyrin as an in vivo histochemical staining for myocardial infarction with MR imaging. Acad Radiol 5(1):537–541

    Google Scholar 

  • Niccoli G, Burzotta F, Galiuto L, Crea F (2009) Myocardial no-reflow in humans. J Am Coll Cardiol 54:281–292

    Article  PubMed  Google Scholar 

  • Nienaber CA, Brunken RC, Sherman CT (1991) Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 18:966–978

    Article  PubMed  CAS  Google Scholar 

  • Nijveldt R, Beek AM, Hirsch A et al (2008) Functional recovery after acute myocardial infarction. Comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52:181–189

    Article  PubMed  Google Scholar 

  • Nijveldt R, Hofman MBM, Hirsch A, Beek AM, Umans VAWM, Algra PR, Piek JJ, van Rossum AC (2009) Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology 250:363–370

    Article  PubMed  Google Scholar 

  • Nishimura T, Kobayashi H, Ohara Y et al (1989) Serial assessment of myocardial infarction by using gated MR imaging and Gd-DTPA. AJR Am J Roentgenol 153(4):715–720

    PubMed  CAS  Google Scholar 

  • O’Regan DP, Ahmed R, Karunanithy N et al (2009) Reperfusion hemorrhage following acute myocardial infarction: Assessment with T2* mapping and effect on measuring the area at risk. Radiology 250:916–922

    Article  PubMed  Google Scholar 

  • Ochiai K, Shimada T, Murakami Y et al (1999) Hemorrhagic myocardial infarction after coronary reperfusion detected in vivo by magnetic resonance imaging in humans: prevalence and clinical implications. J Cardiovasc Magn Reson 1:247–256

    Article  PubMed  CAS  Google Scholar 

  • Okayama S, Uemara S, Soeda T et al (2011) Clinical significance of papillary muscle late enhancement detected via cardiac magnetic resonance imaging in patients with single old myocardial infarction. Int J Cardiol 146:73–79

    Article  PubMed  Google Scholar 

  • Orn S, Manhenke C, Anand IS, Squire I, Nagel E, Edvardsen T, Dickstein K (2007) Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 99:1109–1114

    Article  PubMed  Google Scholar 

  • Orn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VVS, Edvardsen T, Dickstein K (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978–1985

    Article  PubMed  Google Scholar 

  • Ortiz-Pérez JT, Meyers SN, Lee DC et al (2007) Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance Imaging. Eur Heart J 28:1750–1758

    Article  PubMed  Google Scholar 

  • Ortiz-Pérez JT, Rodriguez J, Sheridan NM et al (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 1:282–293

    Article  PubMed  Google Scholar 

  • Ortiz-Pérez JT, Lee DC, Meyers SN, Davidson CJ, Bonow RO, Wu E (2010) Determinants of myocardial salvage during acute myocardial infarction. Evaluation of a combined angiographic and CMR myocardial salvage index. J Am Coll Cardiol Img 3:491–500

    Google Scholar 

  • Oshinski JN, Yang Z, Jones JR et al (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    Article  PubMed  CAS  Google Scholar 

  • Paetsch I, Föll D, Kaluza A et al (2005) Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol Heart Circ Physiol 288:H2708–H2714

    Article  PubMed  CAS  Google Scholar 

  • Paetsch I, Jahnke C, Ferrari VA et al (2006) Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. Eur Heart J 27:1459–1464

    Article  PubMed  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome x detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  • Patterson RE, Jones-Collins BA, Aamodt R et al. (1993) Differences in collateral myocardial blood flow following gradual vs abrupt coronary occlusion. Cardiovasc Res 17:207--213

    Article  Google Scholar 

  • Peters DC, Appelbaum EA, Nezafat R et al (2009) Left ventricular infarct size, peri-infarct zone, and papillary scar measurements: a comparison of high-resolution 3D and conventional 2D late gadolinium enhancement cardiac MRI. J Magn Reson Imaging 30:794–800

    Article  PubMed  Google Scholar 

  • Pfeffer MA, Braunwald E (1989) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172

    Article  Google Scholar 

  • Pfisterer ME, Zellweger MJ, Gersh BJ (2010) Management of stable coronary artery disease. Lancet 375:763–772

    Article  PubMed  CAS  Google Scholar 

  • Phibbs B (1984) Transmural versus Q wave infarction. J Am Coll Cardiol 4:1332

    Article  PubMed  CAS  Google Scholar 

  • Pilz G, Jeske A, Klos M et al (2008) Prognostic value of normal adenosine-stress cardiac magnetic resonance imaging. Am J Cardiol 101:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696

    PubMed  CAS  Google Scholar 

  • Plein S, Ridgway JP, Jones TR et al (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol–initial results. Radiology 225:300–307

    Article  PubMed  Google Scholar 

  • Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU (2004) Assessment of non-ST segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 44:2173–2181

    Article  PubMed  Google Scholar 

  • Plein S, Kozerke S, Suerder D et al (2008a) High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J 29:2148–2155

    Article  PubMed  Google Scholar 

  • Plein S, Younger JF, Sparrow P, Ridgway JP, Ball SG, Greenwood JP (2008b) Cardiovascular magnetic resonance of scar and ischemia burden early after acute ST elevation and non-ST elevation myocardial infarction. J Cardiovasc Magn Reson 10:47–55

    Article  PubMed  Google Scholar 

  • Pomeroy OH, Wendland M, Wagner S et al (1989) Magnetic resonance imaging of acute myocardial ischemia using a manganese chelate, Mn-DPDP. Invest Radiol 24:531–536

    Article  PubMed  CAS  Google Scholar 

  • Porto I, Selvanayagam JB, Van Gaal WJ et al (2006) Plaque volume and occurrence and location of periprocedural myocardial necrosis after percutaneous coronary intervention. Insights from delayed-enhancement magnetic resonance imaging, thrombolysis in myocardial infarction myocardial perfusion grade analysis, and intravascular ultrasound. Circulation 114:662–669

    Article  PubMed  Google Scholar 

  • Prasad A, Singh M, Lerman A et al (2006) Isolated elevation in Troponin T after percutaneous coronary intervention is associated with higher long-term mortality. J Am Coll Cardiol 48:1765–1770

    Article  PubMed  CAS  Google Scholar 

  • Rademakers FE, Marchal G, Mortelmans L, Marchal G, Bogaert J (2003) Evolution of regional performance after an acute myocardial infarction in humans using magnetic resonance tagging. J Physiol 546:777–787

    Article  PubMed  CAS  Google Scholar 

  • Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–220

    Article  PubMed  CAS  Google Scholar 

  • Raman SV, Simonetti OP, Winner MW III et al (2010) Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 55:2480–2488

    Article  PubMed  Google Scholar 

  • Ramani K, Judd RM, Holly TA et al (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694

    PubMed  CAS  Google Scholar 

  • Rehr RB, Peshock RM, Malloy CR (1986) Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J Cardiol 57:864–868

    Article  PubMed  CAS  Google Scholar 

  • Rehwald WG, Fieno DS, Chen EL et al (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105:224–229

    Article  PubMed  Google Scholar 

  • Reimer KA, Jennings RB (1970) The wavefront progression of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    Google Scholar 

  • Reimer KA, Jennings RB (1979) The changing anatomic reference base of evolving myocardial infarction. Circulation 60:866–876

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB, Cobb FR et al (1985) Animal models for protecting ischemic myocardium: results of the NHLBI Cooperative Study. Comparison of unconscious and conscious dog models. Circ Res 56:651–665

    PubMed  CAS  Google Scholar 

  • Rerkpattanapipat P, Morgan TM, Neagle CM et al (2002) Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 90:416–419

    Article  PubMed  Google Scholar 

  • Ricciardi MJ, Wu E, Davidson CJ et al (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783

    Article  PubMed  CAS  Google Scholar 

  • Rieber J, Huber A, Erhard I et al (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27:1465–1471

    Article  PubMed  Google Scholar 

  • Rivas F, Cobb FR, Bache RJ, Greenfield JC (1976) Relationship between blood flow to ischemic regions and extent of myocardial infarction. Circ Res 38:439--447

    PubMed  CAS  Google Scholar 

  • Rochitte CE, Lima JA, Bluemke DA et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  • Roes SD, Kelle S, Kaandorp TA et al (2007) Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 100:930–936

    Article  PubMed  Google Scholar 

  • Roes SD, Borleffs JW, van der Geest RJ et al (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2:183–190

    Article  PubMed  Google Scholar 

  • Rogers WJ, Kramer CM, Geskin G et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    PubMed  Google Scholar 

  • Rokey R, Verani MS, Bolli R et al (1986) Myocardial infarct size quantification by MR imaging early after coronary artery occlusion in dogs. Radiology 158:771–774

    PubMed  CAS  Google Scholar 

  • Rovai D, Di Bella G, Rossi G et al (2007) Q wave prediction of myocardial infarction location, size and transmural extent at magnetic resonance imaging. Cor Art Dis 18:381–389

    Article  Google Scholar 

  • Ruffolo RR Jr (1987) The pharmacology of dobutamine. Am J Med Sci 294:244–248

    Article  PubMed  Google Scholar 

  • Saeed M, Wagner S, Wendland MF et al (1989) Occlusive and reperfused myocardial infarcts: differentiation with Mn-DPDP–enhanced MR imaging. Radiology 172:59–64

    PubMed  CAS  Google Scholar 

  • Saeed M, Bremerich J, Wendland MF et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  CAS  Google Scholar 

  • Saeed M, Lund G, Wendland MF et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 10:871–876

    Google Scholar 

  • Sardella G, Mancone M, Bucciarelli-Ducci C et al (2009) Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J Am Coll Cardiol 53:309–315

    Article  PubMed  Google Scholar 

  • Schaefer S, Malloy CR, Katz J et al (1988) Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 12:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Scheffler K, Hennig JT (2001) Quantification with inversion recovery TrueFISP. Magn Reson Med 45:720–723

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  • Schmidt A, Azevedo CF, Cheng A et al (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115:2006–2014

    Article  PubMed  Google Scholar 

  • Schroeder AP, Houlind K, Pedersen EM, Nielsen TT, Egeblad H (2001) Serial magnetic resonance imaging of global and regional left ventricular remodeling during 1 year after acute myocardial infarction. Cardiology 96:106–114

    Article  PubMed  CAS  Google Scholar 

  • Schuijf JD, Kaandorp TA, Lamb HJ et al (2004) Quantification of myocardial infarct size and transmurality by contrast-enhanced magnetic resonance imaging in men. Am J Cardiol 94:284–288

    Article  PubMed  Google Scholar 

  • Schulz-Menger J, Gross M, Messroghli D et al (2003) Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol 42:513–518

    Article  PubMed  Google Scholar 

  • Schwitter J, Nanz D, Kneifel S et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance. A comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    PubMed  CAS  Google Scholar 

  • Schwitter J, Wacker CM, Van Rossum AC et al (2008) MR-Impact: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489

    Article  PubMed  Google Scholar 

  • Selvanayagam JB, Kardos A, Francis JM et al (2004a) Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–1541

    Article  PubMed  Google Scholar 

  • Selvanayagam JB, Petersen SE, Francis JM et al (2004b) Effects of off-pump versus on-pump coronary surgery on reversible and irreversible myocardial injury. A randomized trial using cardiovascular magnetic resonance imaging and biochemical markers. Circulation 109:345–350

    Article  PubMed  Google Scholar 

  • Selvanayagam JB, Jerosch-Herold M, Porto I et al (2005a) Resting myocardial blood flow is impaired in hibernating myocardium. A magnetic resonance study of quantitative perfusion assessment. Circulation 112:3289–3296

    Article  PubMed  Google Scholar 

  • Selvanayagam JB, Porto I, Channon K et al (2005b) Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury. Insights from cardiovascular magnetic resonance imaging. Circulation 111:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Selvanayagam JB, Cheng ASH, Jerosch-Herold MJ et al (2007) Effect of distal embolization on myocardial perfusion reserve after percutaneous coronary intervention. A quantitative magnetic resonance perfusion study. Circulation 116:1458–1464

    Article  PubMed  Google Scholar 

  • Senior R, Lahiri A (1995) Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol 26:26–32

    Article  PubMed  CAS  Google Scholar 

  • Sensky PR, Jivan A, Hudson NM et al (2000) Coronary artery disease: combined stress MR imaging protocol–one stop evaluation of myocardial perfusion and function. Radiology 215:608–614

    PubMed  CAS  Google Scholar 

  • Setser RM, Chung YC, Weaver JA, Stillman AE, Simonetti OP, White RD (2005) Effect of inversion time on delayed-enhancement magnetic resonance imaging with and without phase-sensitive reconstruction. J Magn Reson Imaging 21:650–655

    Article  PubMed  Google Scholar 

  • Sheifer SE, Manolio TA, Gersh BJ (2001) Unrecognized myocardial infarction. Ann Intern Med 135:801–811

    PubMed  CAS  Google Scholar 

  • Sievers B, John B, Brandts B, Franken U, van Bracht M, Trappe H-J (2004) How reliable is electrocardiography in differentiating transmural from non-transmural myocardial infarction? A study with contrast magnetic resonance as gold standard. Int J Cardiol 97:417–423

    Article  PubMed  Google Scholar 

  • Simonetti OP, Finn JP, White RV, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  • Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223

    PubMed  CAS  Google Scholar 

  • Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Article  PubMed  Google Scholar 

  • Sinusas AJ, Trautman KA, Bergin JD et al (1990) Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation 82:1424–1437

    Article  PubMed  CAS  Google Scholar 

  • Smalling RW (2009) Ischemic time. The new gold standard for ST-segment elevation myocardial infarction care. J Am Coll Cardiol 54:2154–2156

    Article  PubMed  Google Scholar 

  • Sobel BE, Bresnahan GF, Shell WE, Yoder RD (1972) Estimation of infarct size and its relation to prognosis. Circulation 46:640–648

    PubMed  CAS  Google Scholar 

  • Spodick DH (1980) Transmural versus nontransmural infarction. Circulation 62:447–448

    PubMed  CAS  Google Scholar 

  • Steel K, Broderick R, Gandla V et al (2009) Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation 120:1390–1400

    Article  PubMed  Google Scholar 

  • Steen H, Giannitsis E, Futterer S, Merten C, Juenger C, Katus HA (2006) Cardiac troponin T at 96 hours after acute myocardial infarction correlates with infarct size and cardiac function. J Am Coll Cardiol 48:2192–2194

    Article  PubMed  CAS  Google Scholar 

  • Steg PG, FitzGerald G, Fox KAA (2009) Risk stratification in non-ST-segment elevation acute coronary syndromes: troponin alone is not enough. Am J Med 122:107–108

    Article  PubMed  Google Scholar 

  • Strach K, Meyer C, Schild H, Sommer T (2006) Cardiac stress MR imaging with dobutamine. Eur Radiol 16:2728–2738

    Article  PubMed  CAS  Google Scholar 

  • Stuber AM, Schoenberg SO, Hayes C, Spannagl B, Engelmann MG, Franz WM, Reiser MF (2005) Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 237:854–860

    Article  Google Scholar 

  • Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation 101:2981–2988

    PubMed  CAS  Google Scholar 

  • Tanimoto T, Imanishi T, Kitabata H et al (2010) Prevalence and clinical detection of papillary muscle infarction detected by late gadolinium-enhanced magnetic resonance imaging in patients with ST-segment elevation myocardial infarction. Circulation 122:2281–2287

    Article  PubMed  Google Scholar 

  • Tarantini G, Cacciavillani L, Corbetti F et al (2006a) Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty. A study performed with contrast-enhanced magnetic resonance. J Am Coll Cardiol 46:1229–1235

    Article  Google Scholar 

  • Tarantini G, Razzolini R, Cacciavillani L et al (2006b) Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am J Cardiol 98:1033–1040

    Article  PubMed  Google Scholar 

  • Taylor AJ, Al-Saadi N, Abdel-Aty H, Schulz-Menger J, Messroghli DR, Friedrich MG (2004) Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109:2080–2085

    Article  PubMed  Google Scholar 

  • Taylor AM, Dymarkowski S, Verbeken E, Bogaert J (2006) Dection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results. Eur Radiol 16:569–574

    Article  PubMed  Google Scholar 

  • Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  PubMed  CAS  Google Scholar 

  • Thiele H, Kappl MJE, Conradi S, Niebauer J, Hambrecht R, Schuler G (2006) Reproducibility of chronic and acute infarct size measurement by delayed enhancement-magnetic resonance imaging. J Am Coll Cardiol 47:1641–1645

    Article  PubMed  Google Scholar 

  • Thiele H, Kappl MJ, Linke A et al (2007) Influence of time-to-treatment, TIMI-flow grades, and ST-segment resolution on infarct size and infarct transmurality as assessed by delayed enhancement magnetic resonance imaging. Eur Heart J 28:1433–1439

    Article  PubMed  Google Scholar 

  • Thygesen K, Alpert JS, White HD (2007) on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  • Tilak GS, Hsu LY, Hoyt RF Jr, Arai AE, Aletras AH (2008) In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction. Invest Radiol 43:7–15

    Article  PubMed  Google Scholar 

  • Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224

    Article  PubMed  CAS  Google Scholar 

  • Tops LF, Roest AA, Lamb HJ et al (2005) Intraatrial repair of transposition of the great arteries: use of MR imaging after exercise to evaluate regional systemic right ventricular function. Radiology 237:861–867

    Article  PubMed  Google Scholar 

  • Tscholakoff D, Higgins CB, Sechtem U et al (1986) Occlusive and reperfused myocardial infarcts: effect of Gd-DTPA on ECG-gated MR imaging. Radiology 160:515–519

    PubMed  CAS  Google Scholar 

  • Tumkosit M, Puntawangkoon C, Morgan TM et al (2009) Left ventricular infarct size assessed with 0.1 mmol/kg of gadobenate dimeglumine correlates with that assessed with 0.2 mmol/kg of gadopentate dimeglumine. J Comput Assist Tomogr 33:328–333

    Article  PubMed  Google Scholar 

  • Underwood SR, Bax JJ, vom Dahl J et al (2004) Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J 25:815–836

    Article  PubMed  Google Scholar 

  • van Dijkman PR, van der Wall EE, de Roos A et al (1991) Acute, subacute, and chronic myocardial infarction: quantitative analysis of gadolinium-enhanced MR images. Radiology 180(1):147–151

    PubMed  Google Scholar 

  • van Rugge FP, Holman ER, van der Wall EE et al (1993) Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463

    Article  PubMed  Google Scholar 

  • van Rugge FP, van der Wall EE, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138

    PubMed  Google Scholar 

  • Vermeltfoort IA, Bondarenko O, Raijmakers PG et al (2007) Is subendocardial ischemia present in patients with chest pain and normal coronary angiograms? A cardiovascular MR study. Eur Heart J 28:1554–1558

    Article  PubMed  Google Scholar 

  • Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  • Wahl A, Gollesch A, Paetsch I et al (2003) Safety and feasibility of high-dose dobutamine-atropine stress MRI for diagnosis of myocardial ischemia: experience in 1000 consecutive cases. J Cardiovasc Magn Reson 5:51 (abstract)

    Google Scholar 

  • Walker JC, Ratcliffe MB, Zhang P et al (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289:H692–H700

    Article  PubMed  CAS  Google Scholar 

  • Wallace EL, Morgan TM, Walsh TF et al (2009) Dobutamine cardiac magnetic resonance result predict cardiac prognosis in women with known or suspected ischemic heart disease. J Am Coll Cardiol Img 2:299–307

    Google Scholar 

  • Walsh TF, Dall’Armellina E, Chughtai H et al (2009) Adverse effect of increased left ventricular wall thickness on five year outcomes of patients with negative dobutamine stress. J Cardiovasc Magn Reson 11:25

    Article  PubMed  Google Scholar 

  • Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detecton of significant coronary heart disease. Circulation 120:2207–2213

    Article  PubMed  Google Scholar 

  • Weinsaft JW, Kim HW, Shah HW et al (2008) Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance. Prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol 52:148–157

    Article  PubMed  Google Scholar 

  • Weir RAP, Murphy CA, Petrie CJ et al (2010a) Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ Cardiovasc Imaging 3:360–367

    Article  PubMed  Google Scholar 

  • Weir RAP, Martin TN, Murphy CA et al (2010b) Comparison of serial measurements of infarct size and left ventricular ejection fraction by contrast-enhanced cardiac magnetic resonance imaging and electrocardiographic QRS scoring in reperfused anterior ST-elevation myocardial infarction. J Electrocardiol 43:230–236

    Article  PubMed  Google Scholar 

  • Weissleder R, Lee A, Khaw B et al (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385

    PubMed  CAS  Google Scholar 

  • Wesbey GE, Higgins CB, McNamara MT et al (1984) Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 153:165–169

    PubMed  CAS  Google Scholar 

  • Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  CAS  Google Scholar 

  • Williams ES, Kaplan JI, Thatcher F et al (1980) Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J Nucl Med 21:449–453

    PubMed  CAS  Google Scholar 

  • Wisenberg G, Prato FS, Carroll SE et al (1988) Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am Heart J 115:510–518

    Article  PubMed  CAS  Google Scholar 

  • Wolf GL, Baum L (1983) Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. AJR Am J Roentgenol 141:193–197

    PubMed  CAS  Google Scholar 

  • Wright J, Adriaenssens T, Dymarkowski S, Desmet W, Bogaert J (2009) Quantification of myocardial area at risk with T2-weighted CMR. Comparison with contrast-enhanced CMR and coronary angiography. J Am Coll Cardiol Img 2:825–831

    Google Scholar 

  • Wu KC, Zerhouni EA, Judd RM et al (1998a) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    PubMed  CAS  Google Scholar 

  • Wu KC, Kim RK, Bluemke DA et al (1998b) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  • Wu E, Judd RM, Vargas JD (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non–Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  • Wu M-T, Tseng W-Y, Su M-Y et al (2006) Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction. Correlation with viability and wall motion. Circulation 114:1036–1045

    Article  PubMed  Google Scholar 

  • Wu E, Ortiz JT, Tejedor P, Lee DC et al (2008) Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94:730–736

    Article  PubMed  CAS  Google Scholar 

  • Wu M-T, Su M-Y, Huang Y-L et al (2009) Sequential changes of myocardial microstructure in patients with postmyocardial infarction by diffusion-tensor cardiac MR. Correlation with left ventricular structure and function. Circ Cardiovasc Imaging 2:32–40

    Article  PubMed  Google Scholar 

  • Wu M, D’Hooge J, Ganame J et al (2011) Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischemia. Cardiovasc Research 89:166–174

    Article  CAS  Google Scholar 

  • Yan AT, Shayne AJ, Brown KA et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114:32–39

    Article  PubMed  Google Scholar 

  • Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS (2010) Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med 362:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Yelgec NS, Dymarkowski S, Ganame J, Bogaert J (2007) Value of MRI in patients with a clinical suspicion of acute myocarditis. Eur Radiol 17:2211–2217

    Article  PubMed  Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  PubMed  CAS  Google Scholar 

  • Younger JF, Plein S, Barth J, Ridgway JP, Ball SG, Greenwood JP (2007) Troponin-I concentration 72 hours after myocardial infarction correlates with infarct size and presence of microvascular obstruction. Heart 93:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Zornoff LAM, Skali H, Pfeffer MA et al (2002) Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 39:1450–1455

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. P.G. Masci, MD, Pisa, Italy for his critical input in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bogaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogaert, J., Dymarkowski, S. (2011). Ischemic Heart Disease. In: Bogaert, J., Dymarkowski, S., Taylor, A., Muthurangu, V. (eds) Clinical Cardiac MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_336

Download citation

  • DOI: https://doi.org/10.1007/174_2011_336

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23034-9

  • Online ISBN: 978-3-642-23035-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics