Skip to main content

Target Volume Definition in Non-Small Cell Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1815 Accesses

Abstract

Proper target volume delineation is a crucial stage of treatment planning, so any error introduced in this process is a systematic error and cannot be quantified and/or detected by modern treatment technologies, unlike other sources of geometrical uncertainties. All steps of target definition should be standardized. In non-small cell lung cancer radiotherapy, there are specific problems related to the definition of all three consecutive target volumes recommended by ICRU: gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). In GTV delineation, the proper imaging, e.g., standardized way of the use of CT and PET-CT, and continuous radiological training of radiation oncologists are emphasized. For CTV, we still lack robust data on the margin which is necessary to expand around GTV of the tumor and pathologic lymph nodes to adequately account for microscopic spread. Additionally, elective nodal irradiation is still a source of controversies. For PTV definition, major increase in technologies is involved. It leads in some cases to improvement of the tumor coverage and sparing of organs at risk, but as this process is expensive and time consuming, it might not be always beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Belderbos J, Uitterhoeve L, van Zandwijk N et al (2007) Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur J Cancer 43:114–121

    Article  PubMed  Google Scholar 

  • Belderbos JSA, Kepka L, Kong F-M, Martel MK, Videtic GMM, Jeremic B (2008) Report from the international atomic energy agency (IAEA) consultants’ meeting on elective nodal irradiation in lung cancer: non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 72:335–342

    Article  PubMed  Google Scholar 

  • Black QC, Grills IS, Kestin LL (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 60:1272–1282

    Article  PubMed  Google Scholar 

  • Boellard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  Google Scholar 

  • Borst GR, Sonke JJ, Betgen A et al (2007) Kilo-voltage cone-beam computed tomography set-up measurements for lung cancer patients; first clinical results and comparison with electronic portal imaging device. Int J Radiat Oncol Biol Phys 68:555–561

    Article  PubMed  Google Scholar 

  • Bowden P, Fisher R, MacManus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573

    Article  PubMed  Google Scholar 

  • Bradley J, Bae K, Choi N et al (2010) A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small cell lung cancer (NSCLC): primary analysis of radiation therapy oncology group (RTOG) 0515. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • Chapet O, Kong F-M, Quint LE et al (2005) CT-based definition of thoracic lymph node stations: an Atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 63:170–178

    Article  PubMed  Google Scholar 

  • Curran WJ, Scott CB, Langer CJ et al (2003) Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemoradiation for patients with unresected stage III NSCLC: RTOG 9410. Proc Am Soc Clin Oncol 22:621 (abstr 2499)

    Google Scholar 

  • de Langen AJ, Raijmakers P, Riphagen I, Paul MA, Hoekstra OS (2006) The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur J Cardiothorac Surg 29:26–29

    Article  PubMed  Google Scholar 

  • de Ruysscher D, Wanders R, van Haren E et al (2008) HI-CHART: a phase I/II study on the feasibility of high dose continuous hyperfractionated accelerated radiotherapy in patients with inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys 71:132–138

    Article  PubMed  Google Scholar 

  • de Ruysscher D, Faivre-Finn C, Nestle U et al (2010) European organization for research and treatment of cancer recommendations for planning and delivery of high dose, high-precision of radiotherapy for lung cancer. J Clin Oncol 28(36):5301–5310

    Article  PubMed  Google Scholar 

  • Devic S, Tomic N, Faria S et al (2010) Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: still a Pandora’s box? Int J Radiat Oncol Biol Phys 78:1555–1562

    Article  PubMed  Google Scholar 

  • Dillman RO, Herndon J, Seagren SL, Eaton WL Jr, Green MR (1996) Improved survival in stage III non–small-cell lung cancer: seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst 88:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AT, Shen J, Finlay J et al (2010) Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): a comparative analysis of toxicities and clinical outcomes. Radiother Oncol 95:178–184

    Article  PubMed  Google Scholar 

  • Fournel P, Robinet G, Thomas P, Groupe Lyon-Saint-Etienne d’Oncologie Thoracique-Groupe Français de Pneumo-Cancérologie (2005) Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small-cell lung cancer: Groupe Lyon-Saint-Etienne d’Oncologie Thoracique-Groupe Français de Pneumo-Cancérologie NPC 95-01 Study. J Clin Oncol 23:5910–5917

    Article  PubMed  CAS  Google Scholar 

  • Furuse K, Fukuoka M, Kawahara M et al (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non–small-cell lung cancer. J Clin Oncol 17:2692–2699

    PubMed  CAS  Google Scholar 

  • Giraud P, Antoine M, Larrouy A et al (2000) Evaluation of microscopic tumor extension in non-small cell lung cancer for three-dimensional conformal radiotherapy treatment planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Giraud P, Elles S, Helfre S et al (2002) Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 62:27–36

    Article  PubMed  Google Scholar 

  • Giraud P, De Rycke Y, Lavole A et al (2006) Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy? Int J Radiat Oncol Biol Phys 64:127–135

    Article  PubMed  Google Scholar 

  • Greco C, Rosenzweig K, Cascini GL, Tamburini O (2007) Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 57:125–134

    Article  PubMed  Google Scholar 

  • Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    Article  PubMed  Google Scholar 

  • Grills IS, Fitch DL, Goldstein NS et al (2007) Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys 69:334–341

    Article  PubMed  Google Scholar 

  • Huber RM, Flentje M, Schmidt M, Bronchial Carcinoma Therapy Group et al (2006) Simultaneous chemoradiotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small-cell lung cancer: study CTRT99/97 by the bronchial carcinoma therapy group. J Clin Oncol 24(27):4397–4404

    Article  PubMed  CAS  Google Scholar 

  • Hurkmans CW, Remeijer P, Lebesque JV, Mijnher BJ (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58:105–120

    Article  PubMed  CAS  Google Scholar 

  • International Commission on Radiation Units and Measurements (1993) ICRU Report 50. Prescribing, recording and reporting photon beam therapy. ICRU Bethesda, MD, USA

    Google Scholar 

  • International Commission on Radiation Units and Measurements (1999) ICRU Report 62. Prescribing, recording and reporting photon beam therapy. ICRU Bethesda, MD, USA

    Google Scholar 

  • Kara M, Dizbay Sak S, Orhan D, Yavuzer S (2000) Changing patterns of lung cancer;(3/4 in.) 1.9 cm; still a safe length for bronchial resection margin? Lung Cancer 30:161–168

    Article  PubMed  CAS  Google Scholar 

  • Kara M, Dizbay Sak S, Orhan D, Kavukcu S (2001) Proximal bronchial extension with special reference to tumor localization in non-small cell lung cancer. Eur J Cardiothorac Surg 20:350–355

    Article  PubMed  CAS  Google Scholar 

  • Kara M, Dikmen E, Kilic D et al (2002) Prognostic implication of microscopic proximal bronchial extension in non-small cell lung cancer. Ann Thorac Surg 74:348–354

    Article  PubMed  Google Scholar 

  • Kelsey CR, Marks LB, Glatstein E (2009) Elective nodal irradiation for locally advanced non-small-cell lung cancer: it’s called cancer for a reason. Int J Radiat Oncol Biol Phys 73:1291–1292

    Article  PubMed  Google Scholar 

  • Kepka L, Bujko K, Garmol D et al (2007) Delineation variation of lymph node stations for treatment planning in lung cancer radiotherapy. Radiother Oncol 85:450–455

    Article  PubMed  Google Scholar 

  • Kepka L, Bujko K, Zolciak-Siwinska A (2008) Risk of isolated nodal failure for non-small cell lung cancer (NSCLC) treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) techniques. Acta Oncol 47:95–103

    Article  PubMed  Google Scholar 

  • Kepka L, Tatro D, Moran JM et al (2009a) Designing targets for elective nodal irradiation in lung cancer radiotherapy: a planning study. Int J Radiat Oncol Biol Phys 73:1397–1403

    Article  PubMed  Google Scholar 

  • Kepka L, Tyc-Szczepaniak D, Bujko K (2009b) Dose per fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer. J Thorac Oncol 4:853–861

    Article  PubMed  Google Scholar 

  • Kepka L, Bujko K, Orlowski T et al (2011) Cardiopulmonary morbidity and quality of life in non-small cell lung cancer patients treated with or without postoperative radiotherapy. Radiother Oncol 98:238–243

    Article  PubMed  Google Scholar 

  • Kołodziejczyk M, Kepka L, Dziuk M et al (2010) Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • Lagerwaard FJ, van de Vaart PJ, Voet PW et al (2002) Can errors in reconstructing pre-chemotherapy target volumes contribute to the inferiority of sequential chemoradiation in stage III non-small cell lung cancer (NSCLC)? Lung Cancer 38:297–301

    Article  PubMed  Google Scholar 

  • Le Chevalier T, Arriagada R, Quoix E et al (1991) Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non–small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst 83:417–423

    Article  PubMed  CAS  Google Scholar 

  • Macmanus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET-CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94

    Article  PubMed  Google Scholar 

  • Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Naruke T, Suemasu K, Ishikawa S (1978) Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J Thorac Cardiovasc Surg 76:833–839

    Google Scholar 

  • Nestle U, Kremp S, Grosu A (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81:209–225

    Article  PubMed  CAS  Google Scholar 

  • Pasic A, Brokx HA, Comans EF (2005) Detection and staging of preinvasive lesions and occult lung cancer in the central airways with 18F-fluorodeoxyglucose positron emission tomography: a pilot study. Clin Cancer Res 11:6186–6189

    Article  PubMed  CAS  Google Scholar 

  • Persson GF, Nygaard DE, Brink C et al (2010) Deviations in delineated GTV caused by artefacts in 4DCT. Radiother Oncol 96:61–66

    Article  PubMed  Google Scholar 

  • PORT Meta-analysis Trialists Group (1998) Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomized controlled trials. Lancet 352:257–263

    Article  Google Scholar 

  • Rami-Porta R, Wittekind C, Goldstraw P, International Association for the Study of Lung Cancer (IASLC) Staging Committee (2005) Complete resection in lung cancer surgery: proposed definition. Lung Cancer 49:25–33

    Article  PubMed  Google Scholar 

  • Rietzel E, Liu AK, Doppke KP et al (2006) Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 66:287–295

    Article  PubMed  Google Scholar 

  • Rietzel E, Liu AK, Chen GTY, Choi N (2008) Maximum intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oncol Biol Phys 71:1245–1252

    Article  PubMed  Google Scholar 

  • Rocmans P, Emami B, Cox JD et al (1991) Quality control in NSCLC treatment: a consensus report. Lung Cancer 7:S19–S20

    Article  Google Scholar 

  • Rowell NP, Williams CJ et al (2001) Radical radiotherapy for stage I/II non-small cell lung cancer in patients not sufficiently fit or declining surgery (medically inoperable). Cochrane Database Syst Rev 2:CD002935

    PubMed  Google Scholar 

  • Rusch VW, Asamura H, Watanabe H et al Members of IASLC Staging Committee (2009) . The IASLC lung cancer staging project: a proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol 4:568–577

    Article  PubMed  Google Scholar 

  • Saito M, Yokoyama A, Kurita Y et al (2000) Treatment of roentgenographically occult endobronchial carcinoma with external beam radiotherapy and intraluminal low-dose rate brachytherapy: a second report. Int J Radiat Oncol Biol Phys 47:673–680

    Article  PubMed  CAS  Google Scholar 

  • Sause W, Kolesar P, Taylor SI et al (2000) Final results of phase III trial in regionally advanced unresectable non–small-cell lung cancer: radiation therapy oncology group, eastern cooperative oncology group, and southwest oncology group. Chest 117:358–364

    Article  PubMed  CAS  Google Scholar 

  • Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:178–201

    Article  Google Scholar 

  • Slotman BJ, Lagerwaard FJ, Senan S (2006) 4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncol 45:966–972

    Article  PubMed  Google Scholar 

  • Sonke JJ, Beldernos J (2010) Adaptive radiotherapy for lung cancer. Sem Radiat Oncol 20:94–106

    Article  Google Scholar 

  • Sornsen van, de Koste JR, Lagerwaard FJ, Nijssen-Visser MRJ et al (2002) What margins are necessary for incorporating mediastinal nodal mobility into involved-field radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys 53:1211–1215

    Article  Google Scholar 

  • Sornsen van, de Koste JR, Lagerwaard FJ, Nijssen-Visser MRJ et al (2003) Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 56:348–354

    Article  Google Scholar 

  • Spoelstra FOB, Senan S, Le Pechoux C et al (2010) Variations in target volume definition for postoperative radiotherapy in stage III non-small cell lung cancer: analysis of an international contouring study. Int J Radiat Oncol Biol Phys 76:1106–1113

    Article  PubMed  Google Scholar 

  • Steenbakkers RJ, Duppen JC, Fitton I et al (2005) Observer variation in target volume delineation of lung cancer related to radiation oncologist–computer interaction: a “Big Brother” evaluation. Radiother Oncol 77:182–190

    Article  PubMed  Google Scholar 

  • Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–438

    Article  PubMed  Google Scholar 

  • Stroom J, Blaauwqeers H, van Baardwijk A et al (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69:267–275

    Article  PubMed  Google Scholar 

  • Tai P, Yu E, Battista J, van Dyk J (2004) Radiation treatment of lung cancer–patterns of practice in Canada. Radiother Oncol 71:167–174

    Article  PubMed  Google Scholar 

  • Thomas M, Rübe C, Hoffknecht P, German Lung Cancer Cooperative Group et al (2008) Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer. Lancet Oncol 9:636–648

    Article  PubMed  Google Scholar 

  • Trodella L, Granone P, Valente S et al (2002) Adjuvant radiotherapy in non-small cell lung cancer with pathological stage I: definitive results of a phase III randomized trial. Radiother Oncol 62:11–19

    Article  PubMed  Google Scholar 

  • van de Steene J, Linthout N, De Mey J et al (2002) Definition of gross tumor in lung cancer: inter-observer variability. Radiother Oncol 62:37–49

    Article  PubMed  Google Scholar 

  • van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    Article  PubMed  Google Scholar 

  • van Loon J, Siedschlag C, Stroom J et al (2010) Microscopic disease extension in three dimensions for non-small cell lung cancer: development of a prediction model using pathology validated positron emission tomography and computed tomography features. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • van Meerbeeck JP, Kramer GW, van Shil PE, European Organisation for Research, Treatment of Cancer-Lung Cancer Group et al (2007) Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage IIIA-N2 non-small-cell lung cancer. J Natl Cancer Inst 99:442–450

    Article  PubMed  Google Scholar 

  • Videtic GM, Rice TW, Murthy S et al (2008) Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int J Radiat Oncol Biol Phys 72:702–706

    Article  PubMed  Google Scholar 

  • Vokes EE, Herndon JE 2nd, Kelley MJ, Cancer, Leukemia Group B et al (2007) Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: cancer and leukemia group B. J Clin Oncol 25:1698–1704

    Article  PubMed  CAS  Google Scholar 

  • Wolthaus JWH, Schneider C, Sonke JJ et al (2006) Mid-ventilation CT scan construction from four dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys 65:1560–1571

    Article  PubMed  Google Scholar 

  • Wu K, Ung YC, Hornby J et al (2010) PET CT thresholds for radiotherapy target definition in non-small cell lung cancer: how close are we to the pathologic findings? Int J Radiat Oncol Biol Phys 77:699–706

    Article  PubMed  Google Scholar 

  • Yuan S, Meng X, Yu J et al (2007a) Determining optimal clinical target volume margins on the basis of microscopic extracapsular extension of metastatic nodes in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:727–734

    Article  PubMed  Google Scholar 

  • Yuan S, Sun X, Li M et al (2007b) A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III non-small cell lung cancer. Am J Clin Oncol 30:239–244

    Article  PubMed  CAS  Google Scholar 

  • Zatloukal P, Petruzelka L, Zemanova M et al (2004) Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small-cell lung cancer: A randomized study. Lung Cancer 46:87–98

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucyna Kepka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kepka, L., Kolodziejczyk, M. (2011). Target Volume Definition in Non-Small Cell Lung Cancer. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_231

Download citation

  • DOI: https://doi.org/10.1007/174_2011_231

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics