Skip to main content

Transition-Metal-Complexed Catenanes and Rotaxanes: From Dynamic Systems to Functional Molecular Machines

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

Transition metal-based catenanes and rotaxanes constitute a specific class of mechanically interlocked molecules whose metal centers are essential both as templates in the construction of the compounds and for their ability to induce large-amplitude motions. In the present chapter we will first present a historical perspective of the field of interlocking compounds in general, in relation to molecular machines, starting with old work dating back to the 1980s and 1990s. Copper was shown many years ago to be the metal of choice for synthesizing the compounds via a template approach and for setting the molecules in motion using a redox signal (CuII/CuI). In a second paragraph, we will discuss various rotaxanes able to undergo a pirouetting motion of the axis within the threaded ring. Two families of such molecules will be mentioned: (1) a porphyrin-containing [2]rotaxane whose pirouetting motion is induced by a chemical reaction and (2) electrochemically driven systems. In this second category of [2]rotaxanes, the rate of motion could be dramatically increased by gradually modifying structural parameters and, in particular, by making the metal center less and less hindered by its surrounding ligands. The third section will be devoted to molecular shuttles and muscles, both families of compounds being reminiscent of linear machines such as biological muscles. By replacing the classical 2,9-diaryl-1,10-phenanthroline chelate (highly shielding and hindering) used by our group since the 1980s by an endocyclic but non-sterically hindering 3,3′-biisoquinoline derivative, the shuttling rate was increased in spectacular fashion, demonstrating the importance of steric factors in transition metal-based molecular machines. The same 3,3′-biisoquinoline motif was also used in the elaboration of a three-station shuttle, leading to long-distance (>20 Å) transport of a ring along the axis on which it is threaded. Finally, porphyrin-containing [3]rotaxanes and [4]rotaxanes, the latter displaying an overall cyclic structure, will be discussed and shown to behave as adjustable and switchable receptors. The synthesis of such compounds is a particularly challenging task in itself. In addition, the new receptors display fascinating properties such as, in particular, their ability to compress various guests and to expel them from their binding site using a chemical signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bipy:

2,2′-Bipyridyl

CN:

Coordination number

CPK:

Corey–Pauling–Koltun

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DOSY:

Diffusion-ordered NMR spectroscopy

dpbiiq:

8,8′-Diphenyl-3,3′-biisoquinoline fragment

dpp:

2,9-Diphenyl-1,10-phenanthroline

phen:

1,10-Phenanthroline

terpy:

2,2′,6′,2″-Terpyridine

References

  1. Sauvage, J.-P. et al (2001) In: Molecular machines and motors, vol 99. Structure and Bonding. Springer, Berlin/Heidelberg

    Google Scholar 

  2. Balzani V, Venturi M, Credi A (2008) Molecular devices and machines: concepts and perspectives for the nanoworld. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Feringa BL (2000) Nanotechnology: in control of molecular motion. Nature 408:151

    Article  CAS  Google Scholar 

  4. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72

    Article  CAS  Google Scholar 

  5. Walker JE (1998) ATP synthesis by rotary catalysis (Nobel lecture). Angew Chem Int Ed 37:2308

    Article  CAS  Google Scholar 

  6. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmese KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58

    Article  CAS  Google Scholar 

  7. Hirokawa N (1998) Kinesin and dynein super family proteins and the mechanism of organelle transport. Science 279:519

    Article  CAS  Google Scholar 

  8. Balzani V, Clemente-Leon M, Credi A, Ferrer B, Venturi M, Flood AH, Stoddart JF (2006) Autonomous artificial nanomotor powered by sunlight. Proc Natl Acad Sci U S A 103:1178

    Article  CAS  Google Scholar 

  9. Berna J, Leigh DA, Lubomska M, Mendoza SM, Perez EM, Rudolf P, Teobaldi G, Zerbetto F (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704

    Article  CAS  Google Scholar 

  10. Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]catenane-based solid state electronically reconfigurable switch. Science 289:1172

    Article  CAS  Google Scholar 

  11. Eelkema R, Pollard MM, Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Molecular machines: nanomotor rotates microscale objects. Nature 440:163

    Article  CAS  Google Scholar 

  12. Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Stoddart JF, Heath JR (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445:414

    Article  CAS  Google Scholar 

  13. Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456

    Article  CAS  Google Scholar 

  14. Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377

    Article  CAS  Google Scholar 

  15. Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309:755

    Article  Google Scholar 

  16. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152

    Article  CAS  Google Scholar 

  17. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174

    Article  CAS  Google Scholar 

  18. Nguyen TD, Liu Y, Saha S, Leung KC-F, Stoddart JF, Zink JI (2007) Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. J Am Chem Soc 129:626

    Article  CAS  Google Scholar 

  19. Amabilino DB, Stoddart JF (1995) Interlocked and intertwined structures and superstructures. Chem Rev 95:2725

    Article  CAS  Google Scholar 

  20. Dietrich-Buchecker C, Sauvage J-P (1987) Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem Rev 87:795

    Article  CAS  Google Scholar 

  21. Dietrich-Buchecker C, Sauvage J-P (1999) Catenanes, rotaxanes and knots. A journey through the world of molecular topology. Wiley-VCH, Weinheim

    Google Scholar 

  22. Fioravanti G, Haraszkiewicz N, Kay ER, Mendoza SM, Bruno C, Marcaccio M, Wiering PG, Paolucci F, Rudolf P, Brouwer AM, Leigh DA (2008) Three state redox-active molecular shuttle that switches in solution and on a surface. J Am Chem Soc 130:2593

    Article  CAS  Google Scholar 

  23. Schill G (1971) Catenanes, rotaxanes and knots. Academic, New York/London

    Google Scholar 

  24. Vögtle F, Dünnwald T, Schmidt T (1996) Catenanes and rotaxanes of the amide type. Acc Chem Res 29:451

    Article  Google Scholar 

  25. Chambron J-C, Collin J-P, Heitz V, Jouvenot D, Kern J-M, Mobian P, Pomeranc D, Sauvage J-P (2004) Rotaxanes and catenanes built around octahedral transition metals. Eur J Org Chem 8:1627

    Article  Google Scholar 

  26. Collin J-P, Durola F, Mobian P, Sauvage J-P (2007) Pirouetting copper(I)-assembled pseudo-rotaxanes: strong influence of the axle structure on the motion rate. Eur J Inorg Chem 2007:2420

    Article  Google Scholar 

  27. Dietrich-Buchecker C, Khemiss A, Sauvage J-P (1986) High-yield synthesis of multiring copper(I) catenates by acetylenic oxidative coupling. J Chem Soc, Chem Commun 17:1376

    Article  Google Scholar 

  28. Dietrich-Buchecker C, Sauvage J-P (1983) Synthese de composes polyethers macrocycliques derives de la phenanthroline-1,10 diphenyl-2,9. Tetrahedron Lett 24:5091

    Article  CAS  Google Scholar 

  29. Durola F, Russo L, Sauvage J-P, Rissanen K, Wenger OS (2007) Three-component entanglements consisting of three crescent-shaped bidentate ligands coordinated to an octahedral metal centre. Chem Eur J 13:8749

    Article  CAS  Google Scholar 

  30. Faiz JA, Heitz V, Sauvage J-P (2009) Design and synthesis of porphyrin-containing catenanes and rotaxanes. Chem Soc Rev 38:422

    Article  CAS  Google Scholar 

  31. Mohr B, Sauvage J-P, Grubbs RH, Weck M (1997) High-yield synthesis of [2]catenanes by intramolecular ring-closing metathesis. Angew Chem Int Ed 36:1308

    Article  CAS  Google Scholar 

  32. Prikhod'ko AI, Durola F, Sauvage J-P (2008) Iron(II)-templated synthesis of [3]rotaxanes by passing two threads through the same ring. J Am Chem Soc 130:448

    Article  Google Scholar 

  33. Balzani V, Credi A, Silvi S, Venturi M (2006) Artificial nanomachines based on interlocked molecular species: recent advances. Chem Soc Rev 35:1135

    Article  CAS  Google Scholar 

  34. Cárdenas DJ, Livoreil A, Sauvage J-P (1996) Redox control of the ring-gliding motion in a Cu-complexed catenane: a process involving three distinct geometries. J Am Chem Soc 118:11980

    Article  Google Scholar 

  35. Cavallini M, Biscarini F, Leon S, Zerbetto F, Bottari G, Leigh DA (2003) Information storage using supramolecular surface patterns. Science 299:531

    Article  CAS  Google Scholar 

  36. Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358

    Article  CAS  Google Scholar 

  37. Chuang C-J, Li W-S, Lai C-C, Liu Y-H, Peng S-M, Chao I, Chiu S-H (2009) A molecular cage-based [2]rotaxane that behaves as a molecular muscle. Org Lett 11:385

    Article  CAS  Google Scholar 

  38. Dawson RE, Lincoln SF, Easton CJ (2008) The foundation of a light driven molecular muscle based on stilbene and [small alpha]-cyclodextrin. Chem Commun 3980

    Google Scholar 

  39. Livoreil A, Dietrich-Buchecker CO, Sauvage J-P (1994) Electrochemically triggered swinging of a [2]-catenate. J Am Chem Soc 116:9399

    Article  CAS  Google Scholar 

  40. Wurpel GWH, Brouwer AM, van Stokkum IHM, Farran A, Leigh DA (2001) Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. J Am Chem Soc 123:11327

    Article  CAS  Google Scholar 

  41. Bissel RA, Cordova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133

    Article  Google Scholar 

  42. Keaveney CM, Leigh DA (2004) Shuttling through anion recognition. Angew Chem Int Ed 43:1222

    Article  CAS  Google Scholar 

  43. Murakami H, Kawabuchi A, Kotoo K, Kunitake M, Nakashima N (1997) A light-driven molecular shuttle based on a rotaxane. J Am Chem Soc 119:7605

    Article  CAS  Google Scholar 

  44. Pérez EM, Dryden DTF, Leigh DA, Teobaldi G, Zerbetto F (2004) A generic basis for some simple light-operated mechanical molecular machines. J Am Chem Soc 126:12210

    Article  Google Scholar 

  45. Stanier CA, Alderman SJ, Claridge TDW, Anderson HL (2002) Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew Chem Int Ed 41:1769

    Article  Google Scholar 

  46. Wang Q-C, Qu D-H, Ren J, Chen K, Tian H (2004) A lockable light-driven molecular shuttle with a fluorescent signal. Angew Chem Int Ed 43:2661

    Article  CAS  Google Scholar 

  47. Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Electronically configurable molecular-based logic gates. Science 285:391

    Article  CAS  Google Scholar 

  48. Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR (2001) Switching devices based on interlocked molecules. Acc Chem Res 34:433

    Article  CAS  Google Scholar 

  49. Colasson BX, Dietrich-Buchecker C, Jiménez-Molero MC, Sauvage J-P (2002) Towards molecular machines and motors based on transition metal complexes. J Phys Org Chem 15:476

    Article  CAS  Google Scholar 

  50. Collin J-P, Gaviña P, Sauvage J-P (1997) Electrochemically induced molecular motions in copper-complexed threaded systems: from the unstoppered compound to the semi-rotaxane and the fully blocked rotaxane. New J Chem 21:525

    CAS  Google Scholar 

  51. Jiménez-Molero MC, Dietrich-Buchecker C, Sauvage J-P (2000) Toward synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed 39:3284

    Article  Google Scholar 

  52. Coutrot F, Romuald C, Busseron E (2008) A new pH-switchable dimannosyl[c2]daisy chain molecular machine. Org Lett 10:3741

    Article  CAS  Google Scholar 

  53. Du G, Moulin E, Jouault N, Buhler E, Giuseppone N (2012) Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew Chem Int Ed 51:12504

    Article  CAS  Google Scholar 

  54. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng H-R, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov SN, Solares SD, Goddard WA, Ho C-M, Stoddart JF (2005) Linear artificial molecular muscles. J Am Chem Soc 127:9745

    Article  CAS  Google Scholar 

  55. Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA (2013) Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339:189

    Article  CAS  Google Scholar 

  56. Carella A, Rapenne G, Launay J-P (2005) Design and synthesis of the active part of a potential molecular motor. New J Chem 29:288

    Article  CAS  Google Scholar 

  57. Chatterjee MN, Kay ER, Leigh DA (2006) Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J Am Chem Soc 128:4058

    Article  CAS  Google Scholar 

  58. Dietrich-Buchecker C, Sauvage J-P, Kintzinger J-P (1983) Une nouvelle famille de molécules: les métallo-catenanes. Tetrahedron Lett 24:5095

    Article  CAS  Google Scholar 

  59. Dietrich-Buchecker C, Sauvage J-P, Kern J-M (1984) Templated synthesis of interlocked macrocyclic ligands: the catenands. J Am Chem Soc 106:3043

    Article  CAS  Google Scholar 

  60. Linke M, Chambron J-C, Heitz V, Sauvage J-P, Semetey V (1998) Complete rearrangement of a multi-porphyrinic rotaxane by metallation–demetallation of the central coordination site. Chem Commun 2469

    Google Scholar 

  61. Raehm L, Kern J-M, Sauvage J-P (1999) A transition metal containing rotaxane in motion: electrochemically induced pirouetting of the ring on the threaded dumbbell. Chem Eur J 5:3310

    Article  CAS  Google Scholar 

  62. Kern J-M, Raehm L, Sauvage J-P, Divisia-Blohorn B, Vidal P-L (2000) Controlled molecular motions in copper-complexed rotaxanes: an XAS study. Inorg Chem 39:1555

    Article  CAS  Google Scholar 

  63. Weber N, Hamann C, Kern J-M, Sauvage J-P (2003) Synthesis of a copper [3]rotaxane able to function as an electrochemically driven oscillatory machine in solution, and to form SAMs on a metal surface. Inorg Chem 42:6780

    Article  CAS  Google Scholar 

  64. Poleschak I, Kern J-M, Sauvage J-P (2004) A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. Chem Commun 474

    Google Scholar 

  65. Létinois-Halbes U, Hanss D, Beierle J, Collin J-P, Sauvage J-P (2005) A fast-moving [2]rotaxane whose stoppers are remote from the copper complex core. Org Lett 7:5753

    Article  Google Scholar 

  66. Collin J-P, Durola F, Sauvage J-P (2010) Electrochemically driven molecular machines based on transition-metal complexed catenanes and rotaxanes. In: Ceroni P, Credi A, Venturi M (eds) Electrochemistry of functional supramolecular systems. Wiley, New York, pp 425–445

    Chapter  Google Scholar 

  67. Linke M, Chambron J-C, Heitz V, Sauvage J-P, Ensinas S, Barigelletti F, Flamigni L (2000) Multiporphyrinic rotaxanes: control of intramolecular electron transfer rate by steering the mutual arrangement of the chromophores. J Am Chem Soc 122:11834

    Article  CAS  Google Scholar 

  68. Balzani V, Venturi M, Credi A (2003) Molecular devices and machines: a journey into the nanoworld. Wiley-VCH, Weinheim

    Google Scholar 

  69. Dietrich-Buchecker C, Sauvage J-P (1990) Template synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. Tetrahedron 46:503

    Article  CAS  Google Scholar 

  70. Periyasamy G, Collin J-P, Sauvage J-P, Levine RD, Remacle F (2009) Electrochemically driven sequential machines: an implementation of copper rotaxanes. Chem Eur J 15:1310

    Article  CAS  Google Scholar 

  71. Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  72. Durola F, Sauvage J-P (2007) Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. Angew Chem Int Ed 46:3537

    Article  CAS  Google Scholar 

  73. Marlin DS, Cabrera DG, Leigh DA, Slawin AMZ (2006) Complexation-induced translational isomerism: shuttling through stepwise competitive binding. Angew Chem Int Ed 45:77

    Article  CAS  Google Scholar 

  74. Jiang L, Okano J, Orita A, Otera J (2004) Intermittent molecular shuttle as a binary switch. Angew Chem Int Ed 43:2121

    Article  CAS  Google Scholar 

  75. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3349

    Article  Google Scholar 

  76. Clark PG, Day MW, Grubbs RH (2009) Switching and extension of a [c2]daisy-chain dimer polymer. J Am Chem Soc 131:13631

    Article  CAS  Google Scholar 

  77. Fang L, Hmadeh M, Wu J, Olson MA, Spruell JM, Trabolsi A, Yang Y-W, Elhabiri M, Albrecht-Gary A-M, Stoddart JF (2009) Acid-base actuation of [c2]daisy chains. J Am Chem Soc 131:7126

    Article  CAS  Google Scholar 

  78. Wu J, Leung KC-F, Benìtez D, Han J-Y, Cantrill SJ, Fang L, Stoddart JF (2008) An acid–base-controllable [c2]daisy chain. Angew Chem Int Ed 47:7470

    Article  CAS  Google Scholar 

  79. Juluri BK, Kumar AS, Liu Y, Ye T, Yang Y-W, Flood AH, Fang L, Stoddart JF, Weiss PS, Huang TJ (2009) A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3:291

    Article  CAS  Google Scholar 

  80. Jiménez MC, Dietrich-Buchecker C, Sauvage J-P, De Cian A (2000) A hermaphrodite molecule: quantitative copper(I)-directed formation of a doubly threaded assembly from a ring attached to a string. Angew Chem Int Ed 39:1295

    Article  Google Scholar 

  81. Jiménez-Molero MC, Dietrich-Buchecker C, Sauvage J-P (2003) Towards artificial muscles at the nanometric level. Chem Commun 1613

    Google Scholar 

  82. Durola F, Hanss D, Roesel P, Sauvage J-P, Wenger OS (2007) A new family of biisoquinoline chelates. Eur J Org Chem 1:125

    Article  Google Scholar 

  83. Durola F, Sauvage J-P, Wenger OS (2006) Sterically non-hindering endocyclic ligands of the bi-isoquinoline family. Chem Commun 171

    Google Scholar 

  84. Durola F, Lux J, Sauvage J-P (2009) A fast-moving copper-based molecular shuttle: synthesis and dynamic properties. Chem Eur J 15:4124

    Article  CAS  Google Scholar 

  85. Ikeda T, Saha S, Aprahamian I, Leung KCF, Williams A, Deng W-Q, Flood AH, Goddard WA, Stoddart JF (2007) Toward electrochemically controllable tristable three-station [2]catenanes. Chem Asian J 2:76

    Article  CAS  Google Scholar 

  86. Collin J-P, Durola F, Lux J, Sauvage J-P (2009) A rapidly shuttling copper-complexed [2]rotaxane with three different chelating groups in its axis. Angew Chem Int Ed 48:8532

    Article  CAS  Google Scholar 

  87. Lehn J-M (1995) Supramolecular chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  88. Stoddart JF (2001) Molecular machines. Acc Chem Res 34:410

    Article  CAS  Google Scholar 

  89. Fujita M (1999) Self-assembly of [2]catenanes containing metals in their backbones. Acc Chem Res 32:53

    Article  CAS  Google Scholar 

  90. Sauvage J-P (1998) Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc Chem Res 31:611

    Article  CAS  Google Scholar 

  91. Smukste I, Smithrud DB (2003) Structure: function relationship of amino acid [2]rotaxanes. J Org Chem 68:2547

    Article  CAS  Google Scholar 

  92. Lam RTS, Belenguer A, Roberts SL, Naumann C, Jarrosson T, Otto S, Sanders JKM (2005) Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308:667

    Article  CAS  Google Scholar 

  93. Marois JS, Cantin K, Desmarais A, Morin JF (2008) [3]Rotaxane-porphyrin conjugate as a novel supramolecular host for fullerenes. Org Lett 10:33

    Article  CAS  Google Scholar 

  94. Li K, Schuster DI, Guldi DM, Herranz MA, Echegoyen L (2004) Convergent synthesis and photophysics of [60]fullerene/porphyrin-based rotaxanes. J Am Chem Soc 126:3388

    Article  CAS  Google Scholar 

  95. Beer PD, Sambrook MR, Curiel D (2006) Anion-templated assembly of interpenetrated and interlocked structures. Chem Commun 2105

    Google Scholar 

  96. Frey J, Tock C, Collin J-P, Heitz V, Sauvage J-P (2008) A [3]rotaxane with two porphyrinic plates acting as an adaptable receptor. J Am Chem Soc 130:4592

    Article  CAS  Google Scholar 

  97. Collin J-P, Frey J, Heitz V, Sauvage J-P, Tock C, Allouche L (2009) Adjustable receptor based on a [3]rotaxane whose two threaded rings are rigidly attached to two porphyrinic plates: synthesis and complexation studies. J Am Chem Soc 131:5609

    Article  CAS  Google Scholar 

  98. Frey J, Tock C, Collin J-P, Heitz V, Sauvage J-P, Rissanen K (2008) Cyclic [2]pseudorotaxane tetramers consisting of two rigid rods threaded through two bis-macrocycles: copper(I)-templated synthesis and X-ray structure studies. J Am Chem Soc 130:11013

    Article  CAS  Google Scholar 

  99. Frey J, Dobbs W, Heitz V, Sauvage J-P (2007) A 1,10-phenanthroline-containing ring connected to a porphyrin by a rigid aromatic spacer and its copper-complexed pseudorotaxane. Eur J Inorg Chem 2007:2416

    Article  Google Scholar 

  100. Auffrant A, Barbieri A, Barigelletti F, Lacour J, Mobian P, Collin J-P, Sauvage J-P, Ventura B (2007) Bimetallic iridium(III) complexes consisting of Ir(ppy)2 units (ppy = 2-phenylpyridine) and two laterally connected n∧n chelates as bridge: synthesis, separation, and photophysical properties. Inorg Chem 46:6911

    Article  CAS  Google Scholar 

  101. Collin J-P, Durola F, Frey J, Heitz V, Reviriego F, Sauvage J-P, Trolez Y, Rissanen K (2010) Templated synthesis of cyclic [4]rotaxanes consisting of two stiff rods threaded through two bis-macrocycles with a large and rigid central plate as spacer. J Am Chem Soc 132:6840

    Article  CAS  Google Scholar 

  102. Huisgen R (1984) 1,3-Dipolar cycloaddition chemistry. Wiley, New York

    Google Scholar 

  103. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057

    Article  CAS  Google Scholar 

  104. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596

    Article  CAS  Google Scholar 

  105. Collin J-P, Durola F, Frey J, Heitz V, Sauvage J-P, Tock C, Trolez Y (2009) Quantitative formation of [4]pseudorotaxanes from two rods and two bis-macrocycles incorporating porphyrinic plates between the rings. Chem Commun 1706

    Google Scholar 

Download references

Acknowledgments

We would like to thank the highly talented students and postdoctoral researchers who participated in the work discussed in the present chapter. Their respective contributions have been essential to the success of our projects in terms of experimental work but also for their ideas and suggestions regarding the design of the systems and the synthesis routes expected to afford the target molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Sauvage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durot, S., Heitz, V., Sour, A., Sauvage, JP. (2014). Transition-Metal-Complexed Catenanes and Rotaxanes: From Dynamic Systems to Functional Molecular Machines. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_514

Download citation

Publish with us

Policies and ethics