Skip to main content

Single Rotating Molecule-Machines: Nanovehicles and Molecular Motors

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

In the last decade many molecular machines with controlled molecular motions have been synthesized. In the present review chapter we will present and discuss our contribution to the field, in particular through some examples of rotating molecular machines that have been designed, synthesized, and studied in our group. After starting by explaining why it is so important to study such machines as single molecules, we will focus on two families of molecular machines, nanovehicles and molecular motors. The first members of the nanovehicle family are molecules with two triptycenes as wheels: the axle and the wheelbarrow. Then come the four-wheel nanocars. Since triptycene wheels are not very mobile on metallic surfaces, alternative wheels with a bowl-shape structure have also been synthesized and studied on surfaces. The molecular motors are built around ruthenium organometallic centers and have a piano-stool geometry with peripheric ferrocenyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANR:

French national research agency

ASED+:

Atom superposition and electron delocalization

ATP:

Adenosine triphosphate

CNRS:

Centre National de la Recherche Scientifique

Cp:

Cyclopentadienyl

EG:

Electroactive group

ESQC:

Elastic scattering quantum chemistry

IR:

Infrared

LT:

Low temperature

NC-AFM:

Non-contact atomic force microscope

NMR:

Nuclear magnetic resonance

P3N:

Nanosciences, nanotechnologies, and nanosystems program

PAH:

Polycyclic aromatic hydrocarbon

STM:

Scanning tunneling microscope

THF:

Tetrahydrofuran

UHV:

Ultra high vacuum

References

  1. Howe RT, Muller RS, Gabriel KJ, Trimmer WSN (1990) Silicon micromechanics – sensors and actuators on a chip. IEEE Spectrum 27:29

    Article  Google Scholar 

  2. Ishijima A, Harada Y, Kojima H, Funatsu T, Higuchi H, Yanagida T (1994) Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem Biophys Res Commun 199:1057

    Article  CAS  Google Scholar 

  3. Block SM (1997) Real engines of creation. Nature 386:217

    Article  CAS  Google Scholar 

  4. Gimzewski JK, Joachim C, Schlittler RR, Langlais V, Tang H, Johannsen I (1998) Rotation of a single molecule within a supramolecular bearing. Science 281:531

    Article  CAS  Google Scholar 

  5. Rapenne G (2005) Synthesis of technomimetic molecules: towards rotation control in single molecular machines and motors. Org Biomol Chem 3:1165

    Article  CAS  Google Scholar 

  6. Chance JM, Geiger JH, Mislow K (1989) A parity restriction on dynamic gearing immobilizes the rotors in tris(9-triptycyl)germanium chloride and tris(9-triptycyl)cyclopropenium perchlorate. J Am Chem Soc 111:2326

    Article  CAS  Google Scholar 

  7. Clayden J, Pink JH (1998) Concerted rotation in a tertiary aromatic amide: towards a simple molecular gear. Angew Chem Int Ed 37:1937

    Article  CAS  Google Scholar 

  8. Carella A, Jaud J, Rapenne G, Launay J-P (2003) Technomimetic molecules: synthesis of an organometallic molecular turnstile. Chem Commun 2434

    Google Scholar 

  9. Chiaravalloti F, Gross L, Rieder KH, Stojkovic S, Gourdon A, Joachim C, Moresco F (2007) A rack-and-pinion device at the molecular scale. Nat Mater 6:30

    Article  CAS  Google Scholar 

  10. Joachim C, Moresco F, Rapenne G, Meyer G (2002) The design of a nanoscale molecular barrow. Nanotechnology 13:330

    Article  CAS  Google Scholar 

  11. Grill L, Rieder KH, Moresco F, Rapenne G, Stojkovic S, Bouju X, Joachim C (2007) Rolling a single molecular wheel at the atomic scale. Nat Nanotechnol 2:95

    Article  CAS  Google Scholar 

  12. Jacquot de Rouville H-P, Garbage R, Ample F, Nickel A, Meyer J, Moresco F, Joachim C, Rapenne G (2012) Synthesis and STM imaging of symmetric and dissymmetric ethynyl-bridged dimers of boron-subphthalocyanine bowl-shaped nano-wheels. Chem Eur J 18:8925

    Article  CAS  Google Scholar 

  13. Nickel A, Meyer J, Ohmann R, Jacquot de Rouville H-P, Rapenne G, Joachim C, Cuniberti G, Moresco F (2012) STM manipulation of boron-subphthalocyanine nano-wheel dimers on Au(111). J Phys Condens Matter 24:404001

    Article  Google Scholar 

  14. Chu P-LE, Wang L-Y, Khatua S, Kolomeisky AB, Link S, Tour JM (2013) Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars. ACS Nano 7:35

    Article  CAS  Google Scholar 

  15. Jimenez-Bueno G, Rapenne G (2003) Technomimetic molecules: synthesis of a molecular wheelbarrow. Tetrahedron Lett 44:6261

    Article  CAS  Google Scholar 

  16. Rapenne G, Jimenez-Bueno G (2007) Molecular machines: synthesis and characterization of two prototypes of molecular wheelbarrows. Tetrahedron 63:7018

    Article  CAS  Google Scholar 

  17. Grill L, Rieder KH, Moresco F, Jimenez-Bueno G, Wang C, Rapenne G, Joachim C (2005) Imaging of a molecular wheelbarrow by scanning tunneling microscopy. Surf Sci 584:153

    Article  Google Scholar 

  18. Shirai Y, Osgood AJ, Zhao Y, Kelly KF, Tour JM (2005) Directional control in thermally driven single-molecule nanocars. Nano Lett 5:2330

    Article  CAS  Google Scholar 

  19. Joachim C, Rapenne G (2013) Molecule concept nanocars: chassis, wheels and motors? ACS Nano 7:11

    Article  CAS  Google Scholar 

  20. Vives G, Tour JM (2009) Synthesis of single-molecule nanocars. Acc Chem Res 42:473

    Article  CAS  Google Scholar 

  21. Kudernac T, Ruangsupapichat N, Parschau M, Maci B, Katsonis N, Harutyunyan SR, Ernst K-H, Feringa BL (2011) Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479:208

    Article  CAS  Google Scholar 

  22. Jacquot de Rouville H-P, Garbage R, Cook RE, Pujol AR, Sirven AM, Rapenne G (2012) Synthesis of polycyclic aromatic hydrocarbon-based nanovehicles equipped with triptycene wheels. Chem Eur J 18:3023

    Article  CAS  Google Scholar 

  23. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174

    Article  CAS  Google Scholar 

  24. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281

    Article  CAS  Google Scholar 

  25. Kelly TR, Silva HD, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401:150

    Article  CAS  Google Scholar 

  26. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152

    Article  CAS  Google Scholar 

  27. Ruangsupapichat N, Pollard MM, Harutyunyan SR, Feringa BL (2011) Reversing the direction in a light-driven rotary molecular motor. Nat Chem 3:53

    Article  CAS  Google Scholar 

  28. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72

    Article  CAS  Google Scholar 

  29. Vives G, Jacquot de Rouville H-P, Carella A, Launay J-P, Rapenne G (2009) Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem Soc Rev 38:1551

    Article  CAS  Google Scholar 

  30. Perera UGE, Ample F, Echeverria J, Kersell H, Zhang Y, Vives G, Rapenne G, Joachim C, Hla S-W (2013) Clockwise or counterclockwise unidirectional step-by-step rotation of a single molecular motor. Nat Nanotechnol 8:46

    Article  CAS  Google Scholar 

  31. Tierney HL, Murphy CJ, Jewell AD, Baber AE, Iski EV, Khodaverdian HY, McGuire AF, Klebanov N, Sykes ECH (2011) Experimental demonstration of a single-molecule electric motor. Nat Nanotechnol 6:625

    Article  CAS  Google Scholar 

  32. Joachim C, Gimzewski JK (2001) Single molecular rotor at the nanoscale. Struct Bond 99:1

    Article  CAS  Google Scholar 

  33. Manzano C, Soe W-H, Wong HS, Ample F, Gourdon A, Chandrasekhar N, Joachim C (2009) Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat Mater 8:576

    Article  CAS  Google Scholar 

  34. Moresco F, Meyer G, Rieder KH, Tang H, Gourdon A, Joachim C (2001) Recording intramolecular mechanics during the manipulation of a large molecule. Phys Rev Lett 87:088302

    Article  CAS  Google Scholar 

  35. Loppacher C, Guggisberg M, Pfeiffer O, Meyer E, Bammerlin M, Lüthi R, Schlittler RR, Gimzewski JK, Tang H, Joachim C (2003) Direct determination of the energy required to operate a single molecule switch. Phys Rev Lett 90:066107

    Article  Google Scholar 

  36. Garcia EJ, Sniegowski JJ (1995) Surface micromachined microengine. Sens Actuators A Phys 48:203

    Article  CAS  Google Scholar 

  37. Jun YJ, Ah CS, Kim S, Yun WS, Park BC, Ha DH (2007) Manipulation of freestanding Au nanogears using an atomic force microscope. Nanotechnology 18:505304

    Article  Google Scholar 

  38. Deng J, Troadec C, Ample F, Joachim C (2011) Fabrication and manipulation of solid-state SiO2 nano-gears on a gold surface. Nanotechnology 22:275307

    Article  CAS  Google Scholar 

  39. Toyota S (2010) Rotational isomerism involving acetylene carbon. Chem Rev 110:5398

    Article  CAS  Google Scholar 

  40. Palmino F, Makoudi Y, Duverger E, Arab M, Chérioux F, Rapenne G, Ample F, Bouju X (2008) Self-alignment of organic molecular lines at room temperature by template effect of pre-structured Sm/Si(111)-8x2 interface. Chem Phys Chem 9:1437

    Google Scholar 

  41. Bouju X, Chérioux F, Coget S, Rapenne G, Palmino F (2013) Directional molecular sliding at room temperature on a silicon runway. Nanoscale 5:7005

    Article  CAS  Google Scholar 

  42. Walker JF (1998) ATP synthesis by rotary catalysis (Nobel lecture). Angew Chem Int Ed 37:2308

    Article  CAS  Google Scholar 

  43. Carella A, Rapenne G, Launay J-P (2005) Design and synthesis of the active part of a potential molecular rotary motor. New J Chem 29:288

    Article  CAS  Google Scholar 

  44. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in a single-C60 transistor. Nature 407:57

    Article  Google Scholar 

  45. Trofimenko S (1999) Scorpionates: the coordination chemistry of polypyrazolylborate ligands. Imperial College Press, London

    Book  Google Scholar 

  46. Astruc D (2000) Electron and proton reservoir complexes: thermodynamic basis for C−H activation and applications in redox and dendrimer chemistry. Acc Chem Res 33:287

    Article  CAS  Google Scholar 

  47. Broadley K, Lane GA, Connelly NG, Geiger WE (1983) Electrochemical routes to paramagnetic dinuclear and mononuclear palladium π complexes stabilized by the pentaphenylcyclopentadienyl ligand. J Am Chem Soc 105:2486

    Article  CAS  Google Scholar 

  48. Carella A, Launay J-P, Poteau R, Rapenne G (2008) Synthesis and reactivity of penta(4-halogenophenyl)cyclopentadienyl hydrotris (indazolyl)borate ruthenium(II) complexes: rotation-induced Fosbury flop in an organometallic molecular turnstile. Chem Eur J 14:8147

    Article  CAS  Google Scholar 

  49. Vives G, Carella A, Launay J-P, Rapenne G (2008) The chemistry of 1,2,3,4,5-pentaphenylcyclopentadienyl hydrotris(indazolyl)borate ruthenium(II) complexes, building blocks for the construction of potential organometallic molecular motors. Coord Chem Rev 252:1451

    Article  CAS  Google Scholar 

  50. Connelly NG, Manners I (1989) Reduction–oxidation properties of organotransition-metal complexes. Part 29. Pentaphenylcyclopentadienyl complexes of ruthenium. J Chem Soc Dalton Trans 283

    Google Scholar 

  51. Carella A, Vives G, Cox T, Jaud J, Rapenne G, Launay J-P (2006) Synthesis of new tripodal tri-functionalized hydrotris(indazol-1-yl)borate ligands and X-ray structure of their ruthenium cyclopentadiene complexes. Eur J Inorg Chem 980

    Google Scholar 

  52. King AO, Negishi E, Villani FJ, Silveira A (1978) A general synthesis of terminal and internal arylalkynes by the palladium-catalyzed reaction of alkynylzinc reagents with aryl halides. J Org Chem 43:358

    Article  CAS  Google Scholar 

  53. Carella A, Coudret C, Guirado G, Rapenne G, Vives G, Launay J-P (2007) Electron-triggered motions in technomimetic molecules. Dalton Trans 177

    Google Scholar 

  54. Vives G, Sistach S, Carella A, Launay J-P, Rapenne G (2006) Synthesis of triester-functionalized molecular motors incorporating bis-acetylide trans-platinum insulating fragments. New J Chem 30:1429

    Article  CAS  Google Scholar 

  55. Vives G, Gonzalez A, Jaud J, Launay J-P, Rapenne G (2007) Synthesis of molecular motors incorporating bicyclo[2-2-2]octane insulating fragments. Chem Eur J 13:5622

    Article  CAS  Google Scholar 

  56. Vives G, Rapenne G (2008) Directed synthesis of symmetric and dissymmetric molecular motors built around a ruthenium cyclopentadienyl tris(indazolyl)borate complex. Tetrahedron 64:11462

    Article  CAS  Google Scholar 

  57. Vives G, Rapenne G (2006) Breaking the symmetry in the molecular motor family: synthesis of a dissymetrized pentaphenyl cyclopentadienyl ligand and its ruthenium trisindazolylborate complex. Tetrahedron Lett 47:8741

    Article  CAS  Google Scholar 

  58. Walker SD, Barder TE, Martinelli JR, Buchwald SL (2004) A rationally designed universal catalyst for Suzuki–Miyaura coupling processes. Angew Chem Int Ed 43:1871

    Article  CAS  Google Scholar 

  59. Davis AP (1998) Tilting at windmills? The second law survives. Angew Chem Int Ed 37:909

    Article  CAS  Google Scholar 

  60. Mandl CP, König B (2004) Chemistry in motion—unidirectional rotating molecular motors. Angew Chem Int Ed 43:1622

    Article  CAS  Google Scholar 

  61. Jacquot de Rouville H-P, Vives G, Tur E, Crassous J, Rapenne G (2009) Synthesis and analytical resolution of chiral pyrazoles derived from dihydrocarvone. New J Chem 33:293

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS, the Université Paul Sabatier (Toulouse), the Institut Universitaire de France, the European Union, and the ANR P3N (AUTOMOL project no. ANR 09-NANO-040). We are also grateful to the researchers who participated in all the work discussed here and whose names appear in the list of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwénaël Rapenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rapenne, G., Joachim, C. (2014). Single Rotating Molecule-Machines: Nanovehicles and Molecular Motors. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_510

Download citation

Publish with us

Policies and ethics