Skip to main content

Frustrated Lewis Pairs: From Dihydrogen Activation to Asymmetric Catalysis

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

Abstract

The non-self-quenched property of Frustrated Lewis Pairs (FLPs) contradicts the classical Lewis acid–base theory, but this peculiarity offers unprecedented possibilities for the activation of small molecules. Among all of their fascinating applications, FLP mediated hydrogen activation and the associated catalytic hydrogenations are currently considered as the most intriguing illustration of their reactivity. The FLPs enabled the catalytic reduction of a wide range of substrates with molecular hydrogen and tuning of the structural properties of the FLP partners allowed broadening of the substrate scope. Based on detailed mechanistic knowledge, FLP based asymmetric hydrogenation of various substrates could be achieved with high enantioselectivities. More importantly, FLP based enantioselective catalysis is not limited to the field of asymmetric hydrogenation, and other exciting catalytic applications have already appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis GN (1923) Valence and the structure of atoms and molecules. Chemical Catalogue Inc., New York, p 172

    Google Scholar 

  2. Brown HC, Schlesinger HI, Cardon SZ (1942) Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coordination compounds of boron. J Am Chem Soc 64(2):325–329

    Article  CAS  Google Scholar 

  3. Wittig G, Rückert A (1950) Über Komplexbildung mit Triphenylbor (II. Mitt.). Justus Liebigs Ann Chem 566(2):101–113

    Article  CAS  Google Scholar 

  4. Tochtermann W (1966) Structures and reactions of organic ate-complexes. Angew Chem Int Ed 5(4):351–371

    Article  CAS  Google Scholar 

  5. Damico R, Broaddus CD (1966) Hydride transfer. Reactions of triphenylcarbonium fluoroborate and triphenylmethyl bromide with tertiary amines. J Org Chem 31(5):1607–1612

    Article  CAS  Google Scholar 

  6. Doring S et al (1998) Reaction of the Lewis acid tris(pentafluorophenyl)borane with a phosphorus ylide: competition between adduct formation and electrophilic and nucleophilic aromatic substitution pathways. Organometallics 17(11):2183–2187

    Article  Google Scholar 

  7. Welch GC et al (2007) Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Trans 31:3407–3414

    Article  Google Scholar 

  8. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed Eng 49(1):46–76

    Article  CAS  Google Scholar 

  9. Stephan DW (2010) Activation of dihydrogen by non-metal systems. Chem Commun 46(45):8526–8533

    Article  CAS  Google Scholar 

  10. Welch GC et al (2006) Reversible, metal-free hydrogen activation. Science 314(5802):1124–1126

    Article  CAS  Google Scholar 

  11. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129(7):1880–1881

    Article  CAS  Google Scholar 

  12. Wang H et al (2008) Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. Chem Commun 45:5966–5968

    Article  Google Scholar 

  13. Ramos A, Lough AJ, Stephan DW (2009) Activation of H2 by frustrated Lewis pairs derived from mono- and bis-phosphinoferrocenes and B(C6F5)3. Chem Commun 9:1118–1120

    Article  Google Scholar 

  14. Geier SJ et al (2010) New strategies to phosphino-phosphonium cations and zwitterions. Chemistry 16(3):988–993

    CAS  Google Scholar 

  15. Neu RC et al (2010) Probing substituent effects on the activation of H2 by phosphorus and boron frustrated Lewis pairs. Dalton Trans 39(18):4285–4294

    Article  CAS  Google Scholar 

  16. Spies P et al (2007) Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chem Commun 47:5072–5074

    Article  Google Scholar 

  17. Spies P et al (2009) Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. Dalton Trans 9:1534–1541

    Article  Google Scholar 

  18. Spies P et al (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed Eng 47(39):7543–7546

    Article  CAS  Google Scholar 

  19. Axenov KV et al (2010) Structure and dynamic features of an intramolecular frustrated Lewis pair. Chemistry 16(47):14069–14073

    Article  CAS  Google Scholar 

  20. Geier SJ, Gilbert TM, Stephan DW (2008) Activation of H-2 by phosphinoboranes R2PB(C6F5)(2). J Am Chem Soc 130(38):12632–12633

    Article  CAS  Google Scholar 

  21. Jiang C, Blacque O, Berke H (2009) Metal-free hydrogen activation by the frustrated Lewis pairs of ClB(C6F5)2 and HB(C6F5)2 and bulky Lewis bases. Organometallics 28(17):5233–5239

    Article  CAS  Google Scholar 

  22. Ullrich M, Lough AJ, Stephan DW (2009) Reversible, metal-free, heterolytic activation of H-2 at room temperature. J Am Chem Soc 131(1):52–53

    Article  CAS  Google Scholar 

  23. Ullrich M, Lough AJ, Stephan DW (2010) Dihydrogen activation by B(p-C6F4H)3 and phosphines. Organometallics 29(16):3647–3654

    Article  CAS  Google Scholar 

  24. Jiang C et al (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40(5):1091–1097

    Article  Google Scholar 

  25. Sumerin V et al (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed Eng 47(32):6001–6003

    CAS  Google Scholar 

  26. Jiang C et al (2011) Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organometallics 30(8):2117–2124

    Article  CAS  Google Scholar 

  27. Chase PA, Jurca T, Stephan DW (2008) Lewis acid-catalyzed hydrogenation: B(C6F5)(3)-mediated reduction of imines and nitriles with H-2. Chem Commun 14:1701–1703

    Article  Google Scholar 

  28. Axenov KV et al (2009) Catalytic hydrogenation of sensitive organometallic compounds by antagonistic N/B Lewis pair catalyst systems. J Am Chem Soc 131(10):3454–3455

    Article  CAS  Google Scholar 

  29. Axenov KV et al (2009) Functional group chemistry at the group 4 bent metallocene frameworks: formation and "metal-free" catalytic hydrogenation of bis(imino-Cp)zirconium complexes. Organometallics 28(17):5148–5158

    Article  CAS  Google Scholar 

  30. Jiang CF, Blacque O, Berke H (2009) Metal-free hydrogen activation and hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene. Chem Commun 37:5518–5520

    Article  Google Scholar 

  31. Sumerin V et al (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130(43):14117–14119

    Article  CAS  Google Scholar 

  32. Eros G et al (2010) Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew Chem Int Ed 49(37):6559–6563

    Article  CAS  Google Scholar 

  33. Geier SJ, Stephan DW (2009) Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity. J Am Chem Soc 131(10):3476–3477

    Article  CAS  Google Scholar 

  34. Geier SJ et al (2009) From classical adducts to frustrated Lewis pairs: steric effects in the interactions of pyridines and B(C6F5)3. Inorg Chem 48(21):10466–10474

    Article  CAS  Google Scholar 

  35. Webb JD et al (2010) Borohydrides from organic hydrides: reactions of Hantzsch's esters with B(C6F5)3. Chemistry 16(16):4895–4902

    Article  CAS  Google Scholar 

  36. Theuergarten E et al (2010) Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun 46(45):8561–8563

    Article  CAS  Google Scholar 

  37. Chase PA, Stephan DW (2008) Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew Chem Int Ed Eng 47(39):7433–7437

    Article  CAS  Google Scholar 

  38. Holschumacher D et al (2008) Heterolytic dihydrogen activation by a frustrated carbene–borane Lewis pair. Angew Chem Int Ed Eng 47(39):7428–7432

    Article  CAS  Google Scholar 

  39. Chase PA et al (2009) Frustrated Lewis pairs derived from N-heterocyclic carbenes and Lewis acids. Dalton Trans 35:7179–7188

    Article  Google Scholar 

  40. Holschumacher D et al (2009) Dehydrogenation reactivity of a frustrated carbene–borane Lewis pair. Dalton Trans 35:6927–6929

    Article  Google Scholar 

  41. Kronig S et al (2011) Dihydrogen activation by frustrated carbene–borane Lewis pairs: an experimental and theoretical study of carbene variation. Inorg Chem 50(15):7344–7359

    Article  CAS  Google Scholar 

  42. Alcarazo M et al (2010) Exploring the reactivity of carbon(0)/borane-based frustrated Lewis pairs. Angew Chem Int Ed Eng 49(33):5788–5791

    Article  CAS  Google Scholar 

  43. Fan C et al (2010) Dihydrogen activation by antiaromatic pentaarylboroles. J Am Chem Soc 132(28):9604–9606

    Article  CAS  Google Scholar 

  44. Chase PA et al (2007) Metal-free catalytic hydrogenation. Angew Chem Int Ed 46(42):8050–8053

    Article  CAS  Google Scholar 

  45. Stephan DW et al (2011) Metal-free catalytic hydrogenation of polar substrates by frustrated Lewis pairs. Inorg Chem 50(24):12338–12348

    Article  CAS  Google Scholar 

  46. Schwendemann S et al (2010) Metal-free frustrated Lewis pair catalyzed 1,4-hydrogenation of conjugated metallocene dienamines. Organometallics 29(5):1067–1069

    Article  CAS  Google Scholar 

  47. Xu B-H et al (2011) Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon–carbon triple bond. Angew Chem Int Ed Eng 50(31):7183–7186

    Article  CAS  Google Scholar 

  48. Piers WE (2005) The chemistry of perfluoroaryl boranes. Adv Organomet Chem 52:1–76

    Google Scholar 

  49. Soos T (2011) Design of frustrated Lewis pair catalysts for metal-free and selective hydrogenation. Pure Appl Chem 83(3):667–675

    Article  CAS  Google Scholar 

  50. Eros G et al (2012) Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids. Chemistry 18(2):574–585

    Article  CAS  Google Scholar 

  51. Chen D, Klankermayer J (2008) Metal-free catalytic hydrogenation of imines with tris(perfluorophenyl) borane. Chem Commun 18:2130–2131

    Article  Google Scholar 

  52. Heiden ZM, Stephan DW (2011) Metal-free diastereoselective catalytic hydrogenations of imines using B(C6F5)3. Chem Commun 47(20):5729–5731

    Article  CAS  Google Scholar 

  53. Geier SJ, Chase PA, Stephan DW (2010) Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chem Commun 46(27):4884–4886

    Article  CAS  Google Scholar 

  54. Unverhau K et al (2010) Frustrated Lewis pair reactions at the [3]ferrocenophane framework. Organometallics 29(21):5320–5329

    Article  CAS  Google Scholar 

  55. Sajid M et al (2012) N,N-addition of frustrated Lewis pairs to nitric oxide: an easy entry to a unique family of aminoxyl radicals. J Am Chem Soc 134(24):10156–10168

    Article  CAS  Google Scholar 

  56. Momming Cornelia M et al (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed Eng 48(36):6643–6646

    Article  CAS  Google Scholar 

  57. Ashley AE, Thompson AL, O'Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed Eng 48(52):9839–9843

    Article  CAS  Google Scholar 

  58. Menard G, Stephan DW (2010) Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. J Am Chem Soc 132(6):1796–1797

    Article  CAS  Google Scholar 

  59. Menard G, Stephan DW (2011) Stoichiometric reduction of CO(2) to CO by aluminum-based frustrated Lewis pairs. Angew Chem Int Ed Eng 50(36):8396–8399

    Article  CAS  Google Scholar 

  60. Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132(31):10660–10661

    Article  CAS  Google Scholar 

  61. Chen EY-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure–activity relationships. Chem Rev 100(4):1391–1434

    Article  CAS  Google Scholar 

  62. McCahill JSJ, Welch GC, Stephan DW (2009) Sterically hindered phosphine and phosphonium-based activators and additives for olefin polymerization. Dalton Trans 40:8555–8561

    Article  Google Scholar 

  63. Zhang Y, Miyake GM, Chen EYX (2010) Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew Chem Int Ed Eng 49(52):10158–10162

    Article  CAS  Google Scholar 

  64. Jacobsen EN, Pfaltz A, Yamamoto H (2004) Comprehensive asymmetric catalysis. Springer, Berlin

    Google Scholar 

  65. Morrison DJ, Piers WE, Parvez M (2004) (R)-1,1′-binaphthyl-2-bis(pentafluorophenyl)borane Lewis acids. Synlett (13):2429

    Google Scholar 

  66. Parks DJ, Piers WE, Yap GPA (1998) Synthesis, properties, and hydroboration activity of the highly electrophilic borane bis(pentafluorophenyl)borane, HB(C6F5)(2). Organometallics 17(25):5492–5503

    Article  CAS  Google Scholar 

  67. Chen J et al (2010) Planar chiral organoborane Lewis acids derived from naphthylferrocene. Chemistry 16(29):8861–8867

    Article  CAS  Google Scholar 

  68. Mewald M, Fröhlich R, Oestreich M (2011) An axially chiral, electron-deficient borane: synthesis, coordination chemistry, Lewis acidity, and reactivity. Chemistry 17(34):9406–9414

    Article  CAS  Google Scholar 

  69. Sumerin V et al (2011) Highly active metal-free catalysts for hydrogenation of unsaturated nitrogen-containing compounds. Adv Synth Catal 353(11–12):2093–2110

    Article  CAS  Google Scholar 

  70. Chen D, Wang Y, Klankermayer J (2010) Enantioselective hydrogenation with chiral frustrated Lewis pairs. Angew Chem Int Ed Eng 49(49):9475–9478

    Article  CAS  Google Scholar 

  71. Ghattas G et al (2012) Asymmetric hydrogenation of imines with a recyclable chiral frustrated Lewis pair catalyst. Dalton Trans 41(30):9026–9028

    Article  CAS  Google Scholar 

  72. Parks DJ, Piers WE (1996) Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J Am Chem Soc 118(39):9440–9441

    Article  CAS  Google Scholar 

  73. Parks DJ, Blackwell JM, Piers WE (2000) Studies on the mechanism of B(C6F5)(3)-catalyzed hydrosilation of carbonyl functions. J Org Chem 65(10):3090–3098

    Article  CAS  Google Scholar 

  74. Blackwell JM et al (2000) B(C6F5)(3)-catalyzed hydrosilation of imines via silyliminium intermediates. Org Lett 2(24):3921–3923

    Article  CAS  Google Scholar 

  75. Rubin M, Schwier T, Gevorgyan V (2002) Highly efficient B(C6F5)3-catalyzed hydrosilylation of olefins. J Org Chem 67(6):1936–1940

    Article  CAS  Google Scholar 

  76. Rendler S, Oestreich M (2008) Conclusive evidence for an S(N)2-Si mechanism in the B(C6F5)(3)-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew Chem Int Ed 47(32):5997–6000

    Article  CAS  Google Scholar 

  77. Hog DT, Oestreich M (2009) B(C6F5)(3)-catalyzed reduction of ketones and imines using silicon-stereogenic silanes: stereoinduction by single-point binding. Eur J Org Chem 29:5047–5056

    Article  Google Scholar 

  78. Mewald M, Oestreich M (2012) Illuminating the mechanism of the borane-catalyzed hydrosilylation of imines with both an axially chiral borane and silane. Chemistry 18(44):14079–14084

    Article  CAS  Google Scholar 

  79. Chen D et al (2012) Enantioselective hydrosilylation with chiral frustrated Lewis pairs. Chemistry 18(17):5184–5187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Klankermayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, D., Klankermayer, J. (2013). Frustrated Lewis Pairs: From Dihydrogen Activation to Asymmetric Catalysis. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_402

Download citation

Publish with us

Policies and ethics