Skip to main content

SEMICONDUCTOR DETECTORS IN RADIATION MEDICINE: RADIOTHERAPY AND RELATED APPLICATIONS

  • Conference paper
Radiation Detectors for Medical Applications

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Semiconductor radiation detectors play an important role in radiation instrumentation. They have many advantages due to their small size, outstanding energy resolution in nuclear spectroscopy, easy pixilation for high spatial resolution and ability of integration with readout electronics. Advancement in microelectronic industry made silicon one of the most popular material for radiation detectors in medicine with applications in diagnostic and cancer treatment. Radiation therapy is one of the part of radiation medicine associated with cancer treatment. Today almost half of cancer patients are treated by radiation. Clinical outcome of radiation therapy depends on accurate delivery of radiation to the tumour while sparing the normal tissue. Detectors for in vivo real time radiation dosimetry and understanding of radiobiological properties of radiation are crucial for improvement of clinical outcome of treatment. In this chapter presented state-of-the-art in development and applications of silicon semiconductor radiation detectors for quality assurance in radiation therapy including integral dosimetry in photon, electron and neutron therapies, new silicon detectors for microdosimetry in hadron therapy and mini-dosimetry for synchrotron radiation therapy. Applications in external beam therapy and brachytherapy have been covered. Amorphous silicon imaging detectors for portal imaging of medical LINACs and other solid state miniature radiation detectors like fiber optic dosimetry and OSL dosimetry for radiation therapy have been reviewed shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. AAPM “Comprehensive QA for radiation oncology”, Task Group 40, Radiation Therapy Committee, 1993

    Google Scholar 

  2. S.M. Zee “Physics of semiconductor devices”, 2nd edition, John Wiley & Sons, 1981

    Google Scholar 

  3. J.Shi, W.E. Simon, T.C.Zhu “Modelling the instantaneous dose rate dependence of radiation diode detectors”, Med.Phys. 30, 2509–2519, 2003

    Article  PubMed  CAS  Google Scholar 

  4. D. Marre, G. Marinello, “Comparison of p-type commercial electron diodes for in-vivo dosimetry”, Med. Phys. 31, 50–56, 2004–06–02

    Article  CAS  Google Scholar 

  5. P.A. Jursinic, “Implementation of an in-vivo diode dosimetry program and changes in diode characteristics over 4-years clinical history”, Med. Phys. 28, 1718–1726, 2001

    Article  PubMed  CAS  Google Scholar 

  6. A.S. Saini, T.C.Zhu, “Temperature dependence of commercially available diode detectors”, Med.Phys. 29, 622–630, 2002

    Article  PubMed  Google Scholar 

  7. K.T. Welsh, L.E. Reinstein, “The thermal characteristics of different diodes on in-vivo patient dosimetry”, Med.Phys. 28, 844–849, 2001

    Article  PubMed  CAS  Google Scholar 

  8. P.D. Hoggins, P. Alaei, B.J. Gerbi, K.E. Dusenbery, “In-vivo diode dosimetry for routine quality assurance in IMRT”, Med. Phys. 30, 3118–3123, 2003

    Article  Google Scholar 

  9. P.A. Jursinic, B.E. Nelms, “A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery”, Med.Phys. 30, 870–879, 2003

    Article  PubMed  Google Scholar 

  10. C.D. Angelis, S. Onori, M.Pacilio, G.A.P. Cirone, G. Cuttone, L. Raffaele, M. Bucciolini, S. Mazzocchi, “An investigation of the operating characteristics of two PTW diamond detectors in photonand electron beams”, Med. Phys. 29, 248–254, 2002

    Article  PubMed  CAS  Google Scholar 

  11. M. Bucciolini, F.B. Buonamici, S. Mazzocchi, C.D. Angelis, S. Onori, G.A.P. Cirrone, “Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size”, Med.Phys. 30, 2149–2154, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Holmes-Siedle, “The Space Charge Dosimeter”, Nucl. Inst Meth, 121, 169–179, (1974)

    Article  CAS  Google Scholar 

  13. Freeman, R., Holmes-Siedle, A., A Simple Model for Predicting Radiation Effects in MOS Devices, IEEE Trans. Nucl. Sci., NS-25–6, 1216–1225, (1978)

    Article  Google Scholar 

  14. Butson, M.J., Rozenfeld, A.B., Mathur, J.N., Carolan, M., Wong, T.P., Metcalfe, P.E., A New Radiotherapy Surface Dose Detector: The MOSFET, Med. Phys., 23–5, 655–658, (1996)

    Article  Google Scholar 

  15. Rosenfeld, A.B., Carolan, M.G., Allen, B.J., et al, MOSFET Dosimeters: role of encapsulation in mixed gamma-neutron and megavoltage X-ray fields, IEEE Trans, on Nucl. Sci., NS–42, N6, 1870–1877, (1995)

    Article  Google Scholar 

  16. Ramani, R., Russell, S., O’Brien, P., Clinical Dosimetry using MOSFETs, Int. J. Radiation Oncology Biol. Phys., 37–4, 959–964, (1997)

    Article  Google Scholar 

  17. Quach, K.Y., Morales, J., Butson, M.J., Rosenfeld, A.B., Metcalfe, P.E., Measurements of Radiotherapy X-ray Skin Dose on a Chest Wall Phantom, Med. Phys., 27–7, 1676–1680, (2000)

    Article  Google Scholar 

  18. Cheung, T., Butson, M.J., Yu, P.K.N. “Effect of temperature variation on MOSFET dosimetry”, Phys. Med. Biol., 49, 191–196, 2004

    Article  Google Scholar 

  19. P.G. Litovchenko, L.I. Barabash, A.B. Rosenfeld et. al. “MOS structure for emergency gamma and proton dosimetry”, Rad. Prot Dos.33, Nl/4, 179–182, 1990

    CAS  Google Scholar 

  20. Soubra, M., Cygler, J., Mackay, G., Evaluation of a Dual bias Dual Metal Oxide-Silicon Semiconductor Field Transistor Detector as Radiation Dosimeter, Med. Phys., 21–4, 567–572, 1994

    Google Scholar 

  21. Rosenfeld, A.B., Kaplan, G.I., Allen, B.A., Dilmanian, A., Kron, T., Holmes-Siedle, A., MOSFET Dosimetry of X-ray Microbeams, IEEE Trans, on Nucl Sci., NS-46, N6, 1774–1780, (1999)

    Article  Google Scholar 

  22. Kaplan, G., Rosenfeld, A., Allen, B., Booth, J., Carolan, M. and Holmes-Seidle, A. Improved spatial resolution by MOSFET dosimetry of an x-ray microbeam Med. Phys. 27, 239–244, (2000)

    Article  PubMed  CAS  Google Scholar 

  23. T. Kron, A. Rosenfeld, M. Lerch, “Measurements in radiotherapy beams using on-line MOSFET detectors”, Rad.Prot.Dos., 101, Nl/4, 445–448, 2002

    CAS  Google Scholar 

  24. LoSasso, T., Chui, C. and Ling, C. Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med. Phys. 25, 1919–1927 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. D.N. Slatkin et al. “Microbeam radiation therapy”, Med. Phys, 19, 1395–1400, 1992

    Article  PubMed  CAS  Google Scholar 

  26. J.A. Laissue et al. “Neuropathology of ablation of rat gliosarcomas and contiguous brain tissue using a microplanar beam of synchrotron-wiggler-generated X-rays”, Int. J.Cancer, 78, 654–660, 1998

    Article  PubMed  CAS  Google Scholar 

  27. Orion, I., Rosenfeld, A.B., Dilmanian, A., Telang, F., Ren, B., Namito, Y., Monte Carlo Simulations of Dose Distribution from a Synchrotron-Produced Micro-planar Beam Array using the EGS4 Code System, Med. Phys. Biol., 45, 2497–2508, (2000)

    Article  CAS  Google Scholar 

  28. Rosenfeld, A.B., Lerch, M.L.F., et al, Feasibility Study of On-line, High Spatial Resolution MOSFET Dosimetry in Static and Pulsed X-ray Radiation Fields, IEEE Trans. Nucl. Sci., NS-48-N6, (2001)

    Google Scholar 

  29. E. Brauer-Krish, A. Bravin, M. Lerch, A. Rosenfeld, J. Stepanek, M. Di. Michiel, J.A. Laissue “MOSFET dosimetry for Microbeam radiation therapy at the European Synchrotron Radiation Facility”, Med.Phys., 31(3), 609–615, 2004.

    Article  Google Scholar 

  30. Rosenfeld, A.B., Erik A. Siegbahn, Elke Brauer-Krish, Andrew Holmes-Siedle, Michael L.F. Lerch, Alberto Bravin, Iwan M. Cornelius, George J. Takacs, Nirmal Painuly, Heidi Nettelback, Tomas Kron “Edge on Face-to-Face (EOFF) MOSFET for Synchrotron Microbeam Dosimetry: MC modeling”, IEEE Trans on Nucl. Sci., NS-52, N6, December, 2005

    Google Scholar 

  31. Seigbahn, E.A., Brauer-Krisch, E., Stepanek, J., Blattman, H., Laissue, J.A., Bravin, A., Dosimetric studies of microbeam radiation therapy (MRT) with Monte Carlo simulations., Nucl. Instr. Meth. In Phys. Res. A, 2005

    Google Scholar 

  32. E. Brauer-Krischa, H. Requardta, P. Régnarda, S. Cordea, E. Siegbahna, G. LeDuca, T. Brocharda, H. Blattmannb, J. Laissuec, A. Bravina, New irradiation geometry for Microbeam Radiation Thearpy (MRT), Nucl. Instr. Meth, 2005

    Google Scholar 

  33. Butson, M., Cheung, T., Yu, P.K.N., Peripheral dose measurement with a MOSFET detector., Applied Radiation and Isotopes, 62, 631–634, 2005

    Article  PubMed  CAS  Google Scholar 

  34. Rosenfeld, A.B. (invited paper) “MOSFET dosimetry in modern radiation oncology modalities”, Rad. Prot.Dosim, 101, Nl/4, 393–398, 2002

    CAS  Google Scholar 

  35. Kaplan, G.I., Rosenfeld, A.B., Allen, B.J., Coderre, T.A., Liu, H.B., Fission Converter and MOSFET Study of Thermal Neutron Flux Distribution in an Epithermal Neutron Therapy Beam, Med. Phys., 26–9, 1989–1994, (1999)

    Article  Google Scholar 

  36. Rosenfeld, A., Kaplan, G., Carolan, M., B. Allen, Maughan, R., Yudelev, M., Cota, C., and. Coderre, J., “Simultaneous Macro and Micro Dosimetry with MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, pp. 2693–2700, 1996

    Article  CAS  Google Scholar 

  37. J.M. Swartz, M.O. Thurston, “Analysis of the effect of fast-neutron bombardment on the current-voltage characteristics of a conductivity modulated p-i-n diode”, J. Appl. Phys. Vol. 37 (2), pp 745–755, 1966

    Article  Google Scholar 

  38. A.B. Rosenfeld, I.E. Anokhin, L.I. Barabash, O.S. Zinets, P.G. Litovchenko, V.I. Khivrich, L.F. Belovodskiy, A.I. Dumik, V.I. Fominych, V.I. Petrov, G.F. Sluchenkov and G.N. Koval, “P-I-N diodes with a wide measurements range of fast neutron doses”, Rad. Protect. Dosim. 33, 175–178, 1990

    Google Scholar 

  39. I.E. Anokhin, A.B. Rosenfeld, O.S. Zinets, “Evolution of radiation induced defects and the type inversion in high receptivity silicon under neutron irradiation”, Rad Prot Dos, 101, Nl/4, 107–110, 2002

    CAS  Google Scholar 

  40. Khivrich, V.I. Varentsov, M.D. Litovchenko, P.G. Anokhin, A.I. Zinets, O.S. Reinhard, M.I. Rosenfeld, A.B. Carolan, M. Alexiev, D., “High purity silicon as a basic material for manufacturing of radiation detectors and integral neutron dosimeters”, IEEE Trans, on Nucl. Sci. 43, N6, 2687–2692, 1996

    Article  CAS  Google Scholar 

  41. Reft, C.S., Kuchnir, F.T., Awschalom, M. and Lennox, A. Neutron dosimetry with silicon diodes. Med. Phys. 13 (4), 578 (1986)

    Google Scholar 

  42. A.B. Rosenfeld, M. Yudelev, M. Lerch, I. Cornelius, P. Grifin, V. Perevertaylo, I.E Anokhin, O.S. Zinets, V.I. Khivrich, M. Pinkovskaya, D. Alexiev, M. Reinhard. “New neutron dosimetry with planar silicon PIN diodes”, IEEE Trans. Nucl. Sci., NS-50, N6, 2367–2372, 2003

    Article  CAS  Google Scholar 

  43. Maughan, R.L. and Yudelev, M. Physical characteristics of a clinical d (48.5) +Be neutron therapy beam produced by a superconducting cyclotron. Med. Phys. 22 (9), 1459–1465 (1995)

    Article  PubMed  CAS  Google Scholar 

  44. Maughan, R.L., Yudelev, M. and Kota, C. A measurement of the fast-neutron sensitivity of a Geiger-Muller detector in the pulsed neutron beam from a superconducting cyclotron. Phys. Med. Biol. 41 (4), 1341–1351 (1996)

    Article  PubMed  CAS  Google Scholar 

  45. A. Rosenfeld, G. Kaplan, M. Carolan, B. Allen, O. Zinets, V. Khivrich, P.G. Litovchenko “Application of P-I-N diodes and MOSFET for dosimeter in gamma and neutron fields”, Rad. Prot. Dosim., 84, Nl–4, 349–352, 1999

    CAS  Google Scholar 

  46. M. Yudelev, K. Alyosef, J. Brandon, V. Perevertailo, M.L.F. Lerch, A.B. Rosenfeld “Application of semiconductors for dosimetry of fast-neutron therapy beam”, Rad.Prot.Dosim., 110, Nl–4, 573–578, 2004

    Article  CAS  Google Scholar 

  47. K. Alyousef “Use of miniature semiconductor dosimeters in mixed neutron/gamma beam”, PhD thesis, Wayne State University, School of Medicine, 2005. (Supervisors Dr M. Yudelev and Prof. A. Rosenfeld)

    Google Scholar 

  48. A.B. Rosenfeld, K. Alyousef, M. Yudelev, J. Brandon, V. Perevertailo, M. L. F. Lerch, “Single sensors for separate neutron and gamma dosimetry in mixed radiation fields”, IEEE Trans, on Nucl. Sci., (to be published)

    Google Scholar 

  49. G. Kaplan, A.B. Rosenfeld, B. Allen, J.A. Coderre, H.B. Liu, “Fission converter and MOSFET study of thermal neutron flux distribution in an epithermal neutron therapy beam”, Med. Phys., 26(9), 1989–1994, 1999

    Article  PubMed  CAS  Google Scholar 

  50. G.I. Kaplan “Integral and pulse mode silicon dosimetry for dose verification on radiation oncology modalities”, PhD Thesis, University of Wollongong, 2001, Australia (Supervisor Prof.A.B. Rosenfeld)

    Google Scholar 

  51. thermal neutron si detector probe in BNCT

    Google Scholar 

  52. Torru Kabayshi, KRR, Japan, private communication

    Google Scholar 

  53. H.H. Rossi and W. Rosenzweig, “A device for the measurement of dose as a function of specific ionization,” Radiology, vol. 64, pp. 404–411, 1955

    PubMed  CAS  Google Scholar 

  54. International Commission on Radiation Units and Measurements, Microdosimetry, ICRU Report N 36,1983

    Google Scholar 

  55. H.H. Rossi and M.Zaider, “Microdosimetry and Its Applications”, London: Springer, 1996

    Google Scholar 

  56. P. Bradley, A. Rosenfeld “Tissue equivalent Correction for Silicon Microdosimetry detectors in Boron Neutron Capture therapy”, Med. Phys., 25(11), 2220–2225, 1998

    Article  PubMed  CAS  Google Scholar 

  57. P. Bradley, A.B. Rosenfeld, K.K. Lee, D. Jamieson, S. Satoh “Charge collection and radiation hardness of a SOI microdosimeter for space and medical application”, IEEE Trans on Nucl Sci, NS-45, N6, 1998

    Google Scholar 

  58. P. Bradley, A.B. Rosenfeld, B.J. Allen, J. Coderre, J. Capela “Performance of silicon microdosimetry detectors in boron neutron capture therapy”, Radiation Research, 151, 235–243,1998

    Google Scholar 

  59. A. Rosenfeld, P. Bradley, I. Cornelius, J. Flanz “New silicon detector for microdosimetry applications in proton therapy”, IEEE Trans on Nucl.Sci, 47, N4, 1386–1394, 2000

    Article  Google Scholar 

  60. A.B. Rosenfeld, P. Bradley, “Semiconductor microdosimetry in mixed radiation and photon fields: present and future”, Rad.Prot Dosim., 85, N 1-4, 385–388, 1999

    CAS  Google Scholar 

  61. I. Cornelius, A.B. Rosenfeld, P.D. Bradley “Computational technique for deposition energy in complicated silicon structures”, IEEE Trans. Nucl, Sci, 47, N6, 2423–2427, 2000

    Article  CAS  Google Scholar 

  62. P.D. Bradley, A.B. Rosenfeld, B.J. Allen, et al. “Application of Silicon diode arrays for microdosimetry in BNCT and FNT”, in a book Frontiers in Neutron Capture Therapy, p.615–622, edited by Hawthrone at al., Kluwer Academic/Plenum Publisher, 2001

    Google Scholar 

  63. A.B. Rosenfeld, P.D. Bradley, I. Cornelius, M. Zaider, R. Maughan, J. Flanz, J. Yanch, T. Kobayashi, B.J. Allen. “Microdosimetry in hadron therapy”, Rad. Prot. Dosim.101, Nl/4, 431–434, 2002

    CAS  Google Scholar 

  64. I. Cornelius, A. Rosenfeld, R. Siegele, D. Cohen, “IBIS characterization of silicon microdsimeters for space and medical application using a heavy ion microprobe”, Nucl. Instr. Meth. in Physics Research B, 19, 335–338, 2001

    Google Scholar 

  65. I. Cornelius, A. Rosenfeld, Rainer Siegele, David Cohen “Improvement of SOI microdosimeter performance by using pulse shape discrimination technique”, IEEE Trans. Nucl. Sci, 49, N6, 2805–2809, 2002.

    Article  Google Scholar 

  66. Iwan Cornelius, Anatoly Rosenfeld, Peter Bradley “Simulation of silicon microdosimetry measurements in fast neutron therapy”, Australas. Phys. Eng. Sci. Med., 26, N4, 168–171, 2002

    Article  Google Scholar 

  67. I.M. Cornelius, A.B. Rosenfeld, R. Seigele, D. Cohen, “Charge collection in microdosimeter on heavy ions” IEEE Trans. On Nucl. Sci, 50, 2373–2379, 2003

    Article  CAS  Google Scholar 

  68. I. Cornelius, A. Rosenfeld “Monte Carlo verification in Fast Neutron Therapy”, IEEE Trans, on Nucl. Sci, 51, N3, 873–877, 2004

    Article  CAS  Google Scholar 

  69. A. Wroe, A. Rosenfeld, I. Cornelius, D. Prokopovich, M. Reinhard, R. Schulte, V. Bashkirov “Microdosimetric spectra within heterogeneous tissue equivalent structures”, IEEE Trans on Nucl. Sci, 2006, (to be published)

    Google Scholar 

  70. P.D. Bradley, PhD thesis “Development of novel silicon microdosimeter for high LET radiation therapy”, University of Wollongong, Australia (2000), supervisor Prof. A.B. Rosenfeld.

    Google Scholar 

  71. I.M. Cornelius, PhD Thesis “Towards silicon microdosimetry based verification of Monte Carlocalculations in hadron therapy” University of Wollongong, Australia (2004), supervisor Prof A.B.Rosenfeld.

    Google Scholar 

  72. A.B. Rosenfeld, A. Wroe, I. Cornelius, M. Carolan “Verification of Monte Carlo simulations in radiation therapy” Rad. Prot. Dosim. 2006, (in press)

    Google Scholar 

  73. Beddar, A.S., Mackie T.R., Attix F.H., Walter-Equivalent plastic scintillation detectors for high –energy beam dosimetry: Part I, Physical characteristics and theoretical consideration, Phys. Med.Biol. 37,1883–1900, 1992

    Article  PubMed  CAS  Google Scholar 

  74. Beddar, A.S., Mackie T.R., Attix F.H., Walter-Equivalent plastic scintillation detectors for high –energy beam dosimetry: Part II Properties and measuremenls, Phys. Med. Biol. 37,1901–1913,1992

    Article  PubMed  CAS  Google Scholar 

  75. Beddar, A.S., Law, S., Suchowerska, N., Mackie T.R., Plastic scintillation dosimelry:oplimizalion of lighl collection efficiency, Phys.Med. Biol., 48, N9, 1141–1152, 2003

    Article  PubMed  Google Scholar 

  76. Beddar A.S., Suchowerska N., Law, S., Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cherenkov radiation noise, Phys.Med. Biol., 49, 2004

    Google Scholar 

  77. C.J. Marckmann, C.E. Andersen, M.C. Aznar, and L. Botter-Jensen, Optical fibre dosemeler systems for clinical applications based on radioluminiscenl/ce and optically stimulated luminescence from A12O3:C., Rad. Prol. Dosim., 2006 (in press), and private communication.

    Google Scholar 

  78. L.E. Anlonuk, J. Bourdy, W. Huang, D.L. McShan, E.J. Morton, J. Yorkslon, M.J. Longo, R.A. Street “Demonstartion of megavoltage and diagnostic x-ray imaging with hydrogenaled amorphous silicon arrays”, Med.Phys. 19 (6), 1455–1465, 1992

    Article  Google Scholar 

  79. B. Warkenlin, S. Sleciw, S. Ralhee, B.G. Fallone “Dosimelric IMRT verification wilh a flat panel EPID”, Med. Phys., 30(12), 3143–3155, 2003

    Article  Google Scholar 

  80. Peter B. Greer, Carmen C. Popescu “Dosimetric properties of an amorphous silicon electronics portal imaging device for verification of dynamic intensity modulated radiation Iherapy”, Med. Phys. 30(7), 1618–1627, 2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Rosenfeld, A.B. (2006). SEMICONDUCTOR DETECTORS IN RADIATION MEDICINE: RADIOTHERAPY AND RELATED APPLICATIONS. In: Tavernier, S., Gektin, A., Grinyov, B., Moses, W.W. (eds) Radiation Detectors for Medical Applications. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5093-3_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5093-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5091-6

  • Online ISBN: 978-1-4020-5093-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics