Skip to main content

Vicinal Hydration of Biopolymers: Cell Biological Consequences

  • Chapter
Water and the Cell

Abstract

A novel type of hydration of macromolecules in aqueous solution was first suggested by Etzler and Drost-Hansen (1983). This hydration, observed for all macromolecules with a critical mass of >2000 Daltons (MWC), seems identical with vicinal hydration of solid surfaces, possessing the same characteristics, e.g., thermal anomalies at the same temperatures [Tk] and similar shear rate dependence, as well as slow reforming after shear. Furthermore, the vicinal hydration is independent of the detailed chemistry of the macromolecules and of the presence of other solutes, electrolytes and non-electrolytes alike. Evidence for this poorly recognized and often overlooked hydration is presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers W, Hühnerfuss H (1983) Molecular aspects of the system water/monomolecular surface film and the occurrence of a new anomalous dispersion regime at 1. 43 GHz. J Phys Chem 87:5251–5258

    Article  Google Scholar 

  • Anderson NG, Green JG (1975) The soluble phase of the cell. In: Roodyn (ed), Enzyme Cytology, Academic Press, New York, pp 475–490

    Google Scholar 

  • Antonsen KP, Hoffman AS (1992) In: Harris JM (ed), Poly(ethylene glycol) Chemistry, Plenum Press, New York, pp 15–28

    Google Scholar 

  • Bailey FE, Koleske JV (1976) Poly(ethylene oxide), Academic Press, New York

    Google Scholar 

  • Braun CV Jr (1981) Calorimetric and dilatometric studies of structural properties and relaxations of vicinal water, MSc Thesis, Univ Miami at Coral Gables

    Google Scholar 

  • Braun CV Jr, Drost-Hansen W (1976) A DSC study of the heat capacity of vicinal water in porous materials. In: Kerker M (ed), Colloid and Interface Science, Academic Press, New York, vol 3, pp 533–541

    Google Scholar 

  • Brunner C (1847) Untersuchubg uberr die cohesion der flussigkeiten. Ann der Physik und Chem (Pogendorff’s Annals) 70:481

    Article  Google Scholar 

  • Churev NV, Deryaguin BV (1985) Inclusion of structural forces in the theory of stability of colloids and films. J Colloid Interface Sci 103:542–553

    Article  Google Scholar 

  • Clegg JS (1979) Metabolism and the intracellular environment: the vicinal water network model. In: Drost Hansen W, Clegg JS (ed), Cell-associated Water, Academic Press, New York, pp 363–413

    Google Scholar 

  • Clegg JS (1984a) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246:R133–R151

    CAS  Google Scholar 

  • Clegg JS (1984b) Intracellular water and the cytomatrix: some methods of study and current views. J Cell Biol 99:167–171

    Article  Google Scholar 

  • Clifford J (1975) Properties of water in capillaries and thin films. In: Franks F (ed), Water – A Comprehensive Treatise Plenum Press, New York, pp 75–132

    Google Scholar 

  • Daly JG, Hastings R (1981) Temperature dependence of Bragg scattering from crystallized suspensions of macroions. J Phys Chem 85:294–300

    Article  CAS  Google Scholar 

  • De Gennes PG (1997) Soft interfaces. The 1994 dirac memorial lecture. Cambridge University Press, Cambridge, p 117

    Google Scholar 

  • Deryaguin BV, Physik Zeit. D Sowj. (1932) 4:431–432

    Google Scholar 

  • Deryaguin BV, Physik Z (1933) 84:657–670

    Google Scholar 

  • Deryaguin BV (1964) Recent research into the properties of water in thin films and in microcapillaries. The state and movement of water in living organisms, In 19th Symposium of Soc Exp Biol, Cambridge University Press, Cambridge, pp 55–60

    Google Scholar 

  • Deryaguin BV (1975) Physik Zeit. D Sowj. 1932, also Zeitung für Physik 1933; 84:657–670 [For an extensive list of references, see list in ‘Water – a comprehensive treatise’ (‘Water in disperse systems’)], Plenum Press 5:335–336

    Google Scholar 

  • Deryaguin BV (1977) Structural components of the disjoining pressure of thin layers of liquids. Croatica Chem Acta 50:187–195 (see also Clifford 1975)

    Google Scholar 

  • Deryaguin BV, Churev NV (1987) Structure of water in thin layers. Langmuir 3:607–612

    Article  Google Scholar 

  • Dintenfass L (1981) Hyperviscosity in hypertension Pergamon Press, Sydney p 250

    Google Scholar 

  • Dordick R, Drost-Hansen W (1981) High precision viscosity measurements. 2. Dilute aqueous solutions of binary mixtures of the alkali metal chlorides. J Phys Chem 85:1086–1088

    Article  CAS  Google Scholar 

  • Dordick R, Korson L, Drost-Hansen W (1979) High precision viscosity measurements on aqueous solutions of single and mixed electrolytes. 1. Alkali chlorides. J Colloid Interface Sci 72:206–214

    Article  CAS  Google Scholar 

  • Dorsey NE (1940) Properties of ordinary water substances, Rheinhold, New York

    Google Scholar 

  • Dreyer G, Kahrig E, Kirstein D, Erpenbeck J, Lange F (1969) Structural anomalies of water. Naturwiss 56:558–559

    Article  CAS  Google Scholar 

  • Drost-Hansen W (1956) Temperature anomalies and biological temperature optima in the process of evolution. Naturwiss 43:512

    Article  Google Scholar 

  • Drost-Hansen W (1965) Aqueous interfaces – methods of study and structural properties. Part 1. Ind Eng Chem Res. March issue: 28–44, and Part 2 April issue:18–37

    Google Scholar 

  • Drost-Hansen W (1965) The effects on biological systems of higher-order phase transitions in water. NY Acad Sci Ann, Art B 125:471–501

    Article  CAS  Google Scholar 

  • Drost-Hansen W (1968) Thermal anomalies in aqueous systems – manifestations of interfacial phenomena. Chem Phys Lett 2:647–652

    Article  CAS  Google Scholar 

  • Drost-Hansen W (1969) Structure of water near solid interfaces. Ind Eng Chem Res 61:10–47

    CAS  Google Scholar 

  • Drost-Hansen W (1971) Role of water structure in cell-wall interactions. Fed Proc 30:1539–1548

    PubMed  CAS  Google Scholar 

  • Drost-Hansen W (1971) Structure and properties of water at biological interfaces. In: Brown HD (ed), Chemistry of the Cell Interface, Part B, Chapter 6, Academic Press, New York, pp 1–184

    Google Scholar 

  • Drost-Hansen W (1972) Effects of pressure on the structure of water in various aqueous systems. The effect of pressure on organisms, vols XXVI, Symposia, Society for Experimental Biology, Cambridge University Press, pp 61–101

    Google Scholar 

  • Drost-Hansen W (1976) The nature and role of interfacial water in porous media. Am Chem Soc, Div Petroleum Chem 21:278–280

    CAS  Google Scholar 

  • Drost-Hansen W (1976) Structure and functional aspects of interfacial (vicinal) water as related to membranes and cellular systems. Colloq Internat du CRNS (L’eau et les systemes biologique) 246:177–186

    CAS  Google Scholar 

  • Drost-Hansen W (1977) Effects of vicinal water on colloidal stability and sedimentation processes. J Colloid Interface Sci 58:251–262

    Article  CAS  Google Scholar 

  • Drost-Hansen W (1978) Water at biological interfaces – structural and functional aspects. Phy Chem Liquids 7:243–346

    Article  CAS  Google Scholar 

  • Drost-Hansen W (1981) Gradient device for studying effects of temperature on biological systems. J Wash Acad Sci 71:187–201

    Google Scholar 

  • Drost-Hansen W (1982) The occurrence and extent of vicinal water. In: Franks F, Mathias S (ed), Biophysics of Water, Wiley and Sons, New York, pp 163–169

    Google Scholar 

  • Drost-Hansen W (1985) Anomalous volume properties of vicinal water and some recent thermodynamic (DSC) measurements relevant to cell physiology. In: Pullman A, Vasilecu V, Packer L (ed), Water and Ions in Biological Systems, Plenum Press, New York, pp 289–294

    Google Scholar 

  • Drost-Hansen W (1991) Temperature effects on erythrocyte sedimentation rates, cell volumes and viscosities in mammalian blood. Final grant report to USAF Office of Scientific Research, Bolling Air Force Base, Washington DC, p 29

    Google Scholar 

  • Drost-Hansen W (1992) Rheological, biochemical and biophysical studies of blood at elevated temperatures Final grant report to US Office of Scientific Research, Boilling Air Force Base, Washington DC, p 40

    Google Scholar 

  • Drost-Hansen W (1996) Biochemical and cell physiological aspects of hyperthermi Final grant report to US Office of Scientific Research, Boilling Air Force Base, Washington DC, p 20

    Google Scholar 

  • Drost-Hansen W (1997) Long-range hydration of macromolecules in aqueous solutions. 2. 214th ACS National Meeting, Las Vegas, Nevada, Abstract 274

    Google Scholar 

  • Drost-Hansen W (2001) Temperature effects on cell functioning – a critical role for vicinal water. In L’eau dans la cellule. J Cell Mol Biol 47:865–883

    CAS  Google Scholar 

  • Drost-Hansen W, Neill H (1955) Temperature anomalies in the properties of liquid water. Phys rev, vols 100, Abstract 1800

    Google Scholar 

  • Drost-Hansen W, Clegg JS (1979) Cell-associated water, Academic Press, New York, p 440

    Google Scholar 

  • Drost-Hansen W, Lin Singleton J (1995) Our aqueous heritage: evidence for vicinal water in cells. In: Bittar EE, Bittar N (ed), Principles of Medical Biology, vol 4, JAI Press Inc, Greenwich, CN, pp 171–194; and 195–215

    Google Scholar 

  • Drost-Hansen W, Braun CV Jr, Hochstim R, Crowther GW (1987) High precision dilatometry on aqueous suspensions: volume contraction upon settling. In: Ariman T, Nejat Veziroglu T (ed), Particulate and multiphase processes, vol 3, Hemisphere Publishing Corporation, Springer-Verlag, Berlin, pp 111–124

    Google Scholar 

  • Etzler FM (1983) A statistical and thermodynamic model for water near solid surfaces. J Colloid Interface Sci 92:94–98

    Article  Google Scholar 

  • Etzler FM (1991) A comparison of the properties of vicinal water in silica gel, clay, wood, cellulose, and other polymeric materials. In: Levine H, Slade L (ed), Water Relationships in Foods, Plenum Press, New York, pp 805–821

    Google Scholar 

  • Etzler FM, Drost-Hansen W (1979) A role for water in biological rate processes. In: Drost Hansen W, Clegg JS (ed), Cell-associated Water, Academic Press, New York, pp 125–164

    Google Scholar 

  • Etzler FM, Drost-Hansen W (1983) Recent thermodynamic data on vicinal water and a model for their interpretation. Croatica Chem Acta 56:563–592

    CAS  Google Scholar 

  • Etzler FM, Lilies TL (1986) Ionic selectivities by solvents in narrow pores: Physical and biophysical significance. Langmuir 2:797–800

    Article  CAS  Google Scholar 

  • Etzler FM, Fagundus D (1987) The extent of vicinal water. J Colloid Interface Sci 115:513–519

    Article  CAS  Google Scholar 

  • Etzler FM, White PJ (1987) Heat capacity of water in silica pores. J Colloid Interface Sci 94:98–102

    Google Scholar 

  • Etzler FM, Conners JJ (1990) Temperature dependence of the heat capacity of water in small pores. Langmuir 6:1250–1253

    Article  CAS  Google Scholar 

  • Etzler FM, Conners JJ (1991) Structural transitions in vicinal water: pore size and temperature dependence of the heat capacity of water in small pores. Langmuir 7:2293–2297

    Article  CAS  Google Scholar 

  • Etzler FM, Conners JJ, Ross RF (1990) The structure and properties of vicinal water. In: Passeretti JD, Caulfield DF (ed), Materials Interactions Relevant to the Pulp, Paper and Wood Industries, Material Research Society Publishers

    Google Scholar 

  • Etzler FM, Deanne R, Ibrahim TH, Burk TR, Neuman RD (2002) Direct adhesion measurements between pharmaceutical materials. Particles on Surfaces, VSP Utrecht, Netherlands, pp 7–16

    Google Scholar 

  • Etzler FM, Ibrahim TH, Burk TR, Wiulling GA, Neuman RDv (2005) The Effect of the acid-base chemistry of lactose on its adhesion to gelatin capsules; conclusions from contact angles and other surface chemical techniques. Contact Angle, Wettability and Adhesion vol 2, VSP Utrecht

    Google Scholar 

  • Falk M, Kell GS (1966) Thermal properties of water: discontinuities questioned. Science 154:1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Gekko K, Noguchi H (1971) Physicochemical studies of oligodextrans. 1. Molecular weight dependence of intrinsic viscosity, partial specific compressibility and hydrated water. Biopolymers 10:1513–1524

    Article  PubMed  CAS  Google Scholar 

  • Henniker JC (1949) Rev Mod Phys 2:322–341

    Google Scholar 

  • Hühnerfuss H (1987) Molecular aspects of organic surface films on marine water and the modification of water waves. La Chemica e L’Industria 107:97–101

    Google Scholar 

  • Hurtado RM, Drost-Hansen W (1979) Ionic selectivities of vicinal water in pores of a silica gel. In: Drost Hansen W, Clegg JS (ed), Cell-associated Water, Academic Press, New York, pp 115–123

    Google Scholar 

  • Johnson FH, Eyring H, Polisar MJ (1954) The kinetic basis of rheology, Wiley Sons, New York

    Google Scholar 

  • Kaivarainen A (1995) Hierarchic concept of matter and field. Water, biosystems and elementary particles Privately published ISBN 0-9642557-0-7, p 483

    Google Scholar 

  • Kerr J (1970) Relaxation studies on vicinal water. Dissertation, University of Miami, Coral Gables, FL

    Google Scholar 

  • Korson L, Millero F, Drost-Hansen W (1969) Viscosity of water at various temperatures. J Phys Chem 73:34–38

    Article  CAS  Google Scholar 

  • Kurihara K, Kunitake T. (1992) Submicron-range attraction between hydrophobic surfaces in monolayer-modified mica in water. J Am Chem Soc 114:10927–10933

    Article  CAS  Google Scholar 

  • Lafleur M, Pigeon M, Pezelot M, Caille J-P (1989) Raman spectrum of interstitial water in biological systems. J Phys Chem 93:1522–1526

    Article  CAS  Google Scholar 

  • Lin GN (1965) The physical state of water in living cells and model systems. Ann New York Acad Sci, vols 125, pp 402–417 (article 2)

    Google Scholar 

  • Ling GN (1962) A physical theory of the living state: the association-induction hypothesis, Blaisdell, Waltham, MA

    Google Scholar 

  • Ling GN (1979) The polarized multilayer theory of cell water according to the adsorption-induction hypothesis. In: Drost Hansen W, Clegg JS (ed), Cell-associated Water Academic Press, New York, pp 261–269

    Google Scholar 

  • Ling GN (1992) A revolution in the physiology of the living cell, Krieger Publishing Co, Malabar FL, p 378

    Google Scholar 

  • Ling GN (2003) A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules. Physiol Chem Phys Med NMR 35:91–130

    PubMed  CAS  Google Scholar 

  • Ling CS, Drost-Hansen W (1975) DTA study of water in porous glass. Adsortion at interfaces. ACS Symp Ser 8:129–156

    Article  Google Scholar 

  • Lopez-Lacomba JL, Gutzman M, Cortijo M, Mateo P, Aquirre R, Harvey SC, Cheung HC (1989) Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2. Biopolymers 28:2143–22159

    Article  PubMed  CAS  Google Scholar 

  • Low PF (1979) Nature and properties of water in Montmorillonite-water systems. Soil Sci Soc Am J 43:651–658

    Article  CAS  Google Scholar 

  • Lowe GDO (1987). Thrombosis and hemorheology. In: Cien S, Dormandy J, Ernst E, Matrai A Dordrecht (ed), Clinical hemorheology, Martinus Nijhof Publishers, pp 195–226

    Google Scholar 

  • Mastro AM, Hurley DJ (1985) Diffusion of a small molecule in the aqueous compartment of mammalian cells. In: Welch R, Clegg JS (ed), Organization of cell metabolism, Plenum Press, New York, pp 57–74

    Google Scholar 

  • Mentre P, Hui BH (2001) The effects of high hydrostatic pressures on living cells: A consequence of the properties of macromolecules and macromolecular associated water. Int Rev Cytol 201:1–84

    PubMed  CAS  Google Scholar 

  • Montejano JG, Hamann DD, Lanier TC (1983) Final strength and rheological changes during processing of thermally induced fish muscle gels. J Rheology 27:557–579

    Article  Google Scholar 

  • Montejano JG, Hamann DD, Lanier TC (1984) Thermally induced gelation of selected comminuted muscle systems – rheological changes during processing, final strengths and microstructure. J Food Sci 49:1496–1505

    Article  CAS  Google Scholar 

  • Nir S, Stein WD (1971) Two modes of diffusion. J Chem Phys 55:1598–1603

    Article  CAS  Google Scholar 

  • Okano M, Yoshida Y (1994) Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcation in the rabbit aorta. Biorheology 31:155–169

    PubMed  CAS  Google Scholar 

  • Peschel G, Adlfinger KH (1969) Temperatur abhängigkeit der Viskosität sehr dünner Wasserschichten Quartzglasoberfläschen. Naturwiss 58:558–559

    Article  Google Scholar 

  • Peschel G, Adlfinger KH (1970) Viscosity anomalies in liquid surface zones. 3. The experimental method. Ber Bunsen-Gesellschaft 74:351–357

    CAS  Google Scholar 

  • Peschel G, Adlfinger KH (1971) Thermodynamic investigation of the liquid layers between solid surfaces. II. Water between entirely hydroxylated fused silica surfaces. Z Naturfor 26a:707–715

    Google Scholar 

  • Peschel G, Adlfinger KH (1971) Viscosity anomalies in liquid surface zones. 4. The apparent viscosity of water in thin layers adjacent to hydroxylated fused silica. J Colloid Interface Sci 34:505–510

    Article  Google Scholar 

  • Peschel G, Belouschek P (1976) Eine neue Messmethode zur Untersuchung der Struktur dunner Elektrolytschichten zwischen Festkörperoberflächen. Prog Colloid Polym Sci 60:108–119

    Article  CAS  Google Scholar 

  • Peschel G, Belouschek P (1979) The problem of water structure in biological systems. In: Drost Hansen W, Clegg JS (ed), Cell-associated Water, Academic Press New York, pp 3–52

    Google Scholar 

  • Phillips MC, Chapman D (1968) Biochim Biophys Acta 75:301

    Google Scholar 

  • Rhykerd Jr CL, Cushman JH, Low PF (1991) Application of multiple-anlge-of-incidence ellipsometry to the study of thin films adsorbed on surfaces. Langmuir 7:2219–2229 [with references to Low’s numerous earlier papers]

    Article  CAS  Google Scholar 

  • Sato M, Ohshima N (1994) Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells. Biorheology 31:143–155

    PubMed  CAS  Google Scholar 

  • Shoufle JA, Huang S-Y (1972) Tex J Sci 24:197 [see also J Geophys Res 1968; 73:3345]

    Google Scholar 

  • Shoufle JA, Huang CT, Drost-Hansen W (1976) Surface conductance and vicinal water. J Colloid Interface Sci 54:184–202

    Article  Google Scholar 

  • Shephard J, Malmberg E, Logerot D (1974) Some rheological properties of an aqueous surfactant oil recovery agent. Preprint 48th Nat Colloid Symp, Austin TX, 191–196

    Google Scholar 

  • Streekstra GJ (1990) The deformation of red blood cells in coquette flow. Dissertation, University of Utrecht, p 113

    Google Scholar 

  • Uijttewaal W (1990) On the motion of particles in bounded flow: Applications in hemorheology. Dissertation, University of Utrecht, p 128

    Google Scholar 

  • Urbanke C, Romer R, Maass G (1973) The binding of ethidium bromide to different conformations of tRNA: Unfolding or tertiary structure? Eur J Biochem 33:511–516

    Article  PubMed  CAS  Google Scholar 

  • van Steveninck J, Paardekooper M, Dubbleman TMAR, Ben-Hur E, Leddeboer AM (1991) Anomalous properties of water in macromolecular gels. Biochim Biophys Acta 1115:96–100

    PubMed  Google Scholar 

  • Viani BE, Low PF, Roth CB (1983) Direct measurements of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J Colloid Interface Sci 96:229–234

    Article  CAS  Google Scholar 

  • Wiggins P (1975) Thermal anomalies in ion distribution in rat kidney slices and in a model system. Clin Exp Pharmacol Physiol 2:171–176

    Article  PubMed  CAS  Google Scholar 

  • Wu MC, Lanier TC, Hamann DD (1985) Rigidity and viscosity changes of croaker actomyosin during thermal gelation. J Food Sci 50:14–19

    Article  CAS  Google Scholar 

  • Young TF (1966) Paper presented at Tetrasectional ACS meeting. Santa Fe, New Mexico

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Drost-Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Drost-Hansen, W. (2006). Vicinal Hydration of Biopolymers: Cell Biological Consequences. In: Pollack, G.H., Cameron, I.L., Wheatley, D.N. (eds) Water and the Cell. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4927-7_9

Download citation

Publish with us

Policies and ethics