Skip to main content

Biology’s Unique Phase Transition Drives Cell Function

  • Chapter
Water and the Cell

Abstract

Systematic designs, physical characterizations and data analyses of elastic-contractile model proteins have given rise to a series of physical concepts associated with phase transitions of hydrophobic association and with the nature of elasticity that provide new insight into the function of a number of protein machines, namely, 1) Complex III of the electron transport chain wherein electron transfer pumps protons across the inner mitochondrial membrane, 2) the F1-motor of ATP synthase that uses return of protons to produce the great majority of ATP in living organisms, 3) the myosin II motor of muscle contraction that uses ATP hydrolysis to produce movement, 4) the kinesin bipedal motor that walks along microtubules to transport cargo within the cell, and 5) the calcium-gated potassium channel. The physical processes utilize an understanding of the change in Gibbs free energy due to hydrophobic association, Δ G HA , the water-mediated repulsion between hydrophobic domains and charged groups, Δ G ap , and stretching of interconnecting chain segments that attends hydrophobic association

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å of F1–ATPase from bovine heart mitochondria. Nature (London) 370:621–628. Protein Data Bank, Structure File 1BMF

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Research 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Gyorgyi AG, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: Further insights into the mechanics of the motor. Proc Natl Acad Sci USA 99:12645–12650. Protein Data Bank, Structure Files 1KK7 and 1KK8

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R(2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522 Protein Data Bank, Structure File 1LNQ

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K, Yasuda R, Noji H (2000) 1F_1-ATPase: A highly efficient rotary ATP machine. In: Banting G, Higgins SJ (eds), Essays in Biochemistry, Molecular Motors. Portland Press, 35:3–18

    CAS  Google Scholar 

  • Kozielski F, Sack S, Marx A, Thormählen M, Schönbrunn E, Biou V, Mandelkow E-M, Mandlekow M (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91:985–994. Protein Data Bank, Structure File 3KIN

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc_1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805. Protein Data Bank, Structure File 1KYO

    Article  PubMed  CAS  Google Scholar 

  • Martz E (2002) ‘‘FrontDoor to Protein Explorer 1.982 Beta’’ Copyright © 2002, proteinexplorer.org

    Google Scholar 

  • Menz RI, Walker JE, Leslie AGW (2001) Structure of bovine mitochondrial F_1-ATPase with nucleotide bound to all three catalytic sites: Implications for mechanism of rotary catalysis. Cell 106:331–341. Protein Data Bank, Structure File 1H8E

    Article  PubMed  CAS  Google Scholar 

  • Mota F, Teixeira M (2005) Crystal structure and mechanism of a calcium-gated potassium channel: MthK. Report for the Post-graduate Training Course: Biology’s Engineering Principles for Design of Protein-based Machines and Materials. University of Minho, Braga, Portugal, Spring

    Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F_1–ATPase. Nature (London) 386:299–302

    Article  CAS  Google Scholar 

  • Pollack GH (2001) Cells, Gels and the Engines of Life: A New Unifying Approach to Cell Function Ebner and Sons, Seattle

    Google Scholar 

  • Stackelberg Mv, Müller HR (1951) Zur Struktur der Gashydrate. Naturwissenschaften 38:456

    Article  Google Scholar 

  • Stackelberg Mv, Müller HR (1954). ‘‘Feste Gashydrate II: Struktur und Raumchemie.’’ Zeitschrift für Elektochemie 54:25–39. (now Berichte der Bunsengesellschaft für physicalische Chemie)

    Google Scholar 

  • Teeter MM (1984) Hydrophobic protein at atomic resolution: Pentagonal rings of water molecules in crystals of Crambin. Proc Natl Acad Sci USA 81:6014–6018

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1992) Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101:11007–11028

    Article  CAS  Google Scholar 

  • Urry DW (2004) The change in Gibbs free energy for hydrophobic association: Derivation and evaluation by means of inverse temperature transitions. Chem Phys Lett 399:177–183

    CAS  Google Scholar 

  • Urry DW (2006a) Deciphering engineering principles for the design of protein-based nanomachines. In: Renugopalakrishnan V, Lewis R, Dhar PK (eds), Protein-Based Nanotechnology Springer-Verlag (Kluwer Academic Publishers) (in press)

    Google Scholar 

  • Urry DW (2006b) Function of the F_1-motor (F_1-ATPase) of ATP synthase by apolar-polar repulsion through internal interfacial water. Cell Biol Int 30:44–55

    Article  CAS  Google Scholar 

  • Urry DW (2005a) Hydrophobic and elastic mechanisms in Complex III/Rieske Iron Protein (RIP), walking protein motors and protein-based materials. In: Shimohigashi Y(ed.), The Japanese Peptide Society, Proceedings of Asian Pacific International Peptide Symposium, APIPS-JPS 2004, pp 115–118 (ISSN 1344 7661)

    Google Scholar 

  • Urry DW (2005b) Protein-based polymers: Mechanistic foundations for design and processing. Proceedings of the 21st Annual Meeting of the Polymer Processing Society, Leipzig, Germany, June 19–23

    Google Scholar 

  • Urry DW (2006c) What Sustains Life? Consilient mechanisms for protein-based machines and materials. Springer-Verlag, LLC, New York, ISBN: 081764346X

    Google Scholar 

  • Urry DW, Parker TM (2002). Mechanics of elastin: Molecular mechanism of biological elasticity and its relevance to contraction. J Muscle Res Cell Mobility 23:541–547; Special Issue: Mechanics of Elastic Biomolecules, Henk Granzier, Miklos Kellermayer Jr., Wolfgang Linke, Eds

    Google Scholar 

  • Urry DW, Peng S-Q, Xu J, McPherson DT (1997) Characterization of waters of hydrophobic hydration by microwave dielectric relaxation. J. Am. Chem. Soc 119:1161–1162

    Article  CAS  Google Scholar 

  • Wilson EO (1998) Consilience, The Unity of Knowledge Alfred E. Knopf, New York, p 8

    Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc_1. Nature 392:677–684. Protein Data Bank, Structure Files 1BCC and 3BBC

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Urry, D.W. (2006). Biology’s Unique Phase Transition Drives Cell Function. In: Pollack, G.H., Cameron, I.L., Wheatley, D.N. (eds) Water and the Cell. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4927-7_6

Download citation

Publish with us

Policies and ethics