Skip to main content

Mass propagation of tropical crops in temporary immersion systems

  • Chapter
Liquid Culture Systems for in vitro Plant Propagation

Abstract

Temporary immersion systems (TIS) have been described for in vitro multiplication of a wide range of tropical crops. Laboratory protocols are available for shoot multiplication, somatic embryo and microtuber production. Seven species are now commercially propagated by this culture technique (Ananas comosus, Coffea arabica, Cymbopogon citratus, Musa sp., Phalaenopsis, Saccharum sp., Solanum tuberosum) with different regeneration pathways and a variety of TIS designs. Beside the development of methods for producing somatic embryos in TIS, shoot multiplication protocols are the most applied from the commercial point of view. RITA® proved to be a suitable tool for research and laboratory scale, but for commercial application larger vessels are frequently used. Most important tropical species are commercially propagated in TIS using twin flasks ranging from 5–10 litres.

Production strategies for plant propagation in TIS, either by organogenesis or somatic embryogenesis are discussed and examples are given to illustrate the different possibilities for TIS integration in propagation of Musa sp. and Solanum tuberosum for shoot multiplication and microtuber production. For sugarcane (Saccharum sp.) somatic embryo production in bioreactors, embryo germination in TIS and field performance of regenerated plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita M & Takayama S (1994) Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep. 13: 184–187

    Google Scholar 

  • Akula A, Becker D & Bateson M (2001) High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, TRI-2025, by temporary immersion. Plant Cell Rep. 19: 1140–1145

    Google Scholar 

  • Albany N, Vilchez J, Jiménez E, García L, de Feria M, Pérez N, Sarría Z, Pérez B & Clavelo J (2002) Use of growth retardants for banana (Musa AAA cv. Grand Naine) shoot multiplication in temporary immersion systems. First International Symposium on “Liquid Systems for in vitro Mass Propagation of Plants” (p. 108). Agricultural University of Norway. 29 May–2 June

    Google Scholar 

  • Alvard D, Cote F & Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tiss. Org. Cult. 32: 55–60

    Google Scholar 

  • Berthouly M & Etienne H (1999) Somatic embryogenesis of coffee. In: Jain SM, Gupta PK & Newton RJ (eds) Somatic Embryogenesis in Woody Plants, Vol. 5 (pp. 259–288). Kluwer Academic Publishers, London

    Google Scholar 

  • Cabasson C, Alvard D, Dambier D, Ollitrault P & Teisson C (1997) Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tiss. Org. Cult. 50: 33–37

    Google Scholar 

  • Escalant J-V, Teisson C & Cote F (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.) In Vitro Cell. Dev. Biol. 30: 181–186

    Google Scholar 

  • Escalona M, Lorenzo B, González B, Daquinta M, González JL, Desjardins Y & Borroto C (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion. Plant Cell Rep. 18: 743–748

    Google Scholar 

  • Etienne H & Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tiss. Org. Cult 69: 215–231

    Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferriere N, Carron MP, Berthouly M & Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg) using the temporary immersion technique. In Vitro Cell. Dev. Biol.-Plant. 33: 81–87

    Google Scholar 

  • Freire M (2001) Nueva metodología de embriogénesis somática en caña de azúcar (Saccharum spp híbrido) empleando medios de cultivo líquidos. Tesis de Doctorado (p. 107). Instituto de Biotecnología de las Plantas. Universidad Central de Las Villas, Santa Clara, Cuba

    Google Scholar 

  • Gómez R, de Feria M, Posada L, Gilliard T, Bernal F, Reyes M, Chávez M & Quiala E (2002) Somatic embryogenesis of the banana hybrid cultivar FHIA-18 (AAAB) in liquid medium and scaled-up in a bioreactor. Plant Cell Tiss. Org. Cult. 68: 21–26

    Google Scholar 

  • Hempfling T & Preil W (2002) Application of a temporary immersion system in propagation of Phalaenopsis. First International Symposium on “Liquid Systems for in vitro Mass Propagation of Plants” (pp. 47–48). Agricultural University of Norway. 29 May–2 June

    Google Scholar 

  • Hohe A, Gerth A, Jiménez E, Jordan M, Gómez R, Schmeda G & Wilken D (2002) Production of active substances applying temporary immersion systems. First International Symposium on “Liquid Systems for in vitro Mass Propagation of Plants” (pp. 49–50). Agricultural University of Norway. 29 May–2 June

    Google Scholar 

  • Jiménez E (1995) Propagacion in vitro de la caña de azúcar (Saccharum spp híbrido). Tesis de Doctorado. Instituto de Biotecnología de las Plantas. Universidad Central de Las Villas, Santa Clara, Cuba. p. 95

    Google Scholar 

  • Jiménez E, Pérez N, de Feria M, Barbón R, Capote A, Chávez M & Quiala E (1999) Improved production of potato microtubers in a temporary immersion system. Plant Cell Tiss. Org. Cult. 59: 19–23

    Google Scholar 

  • Jiménez E, de Feria M, Freire M, Quiala E, Chávez M, Herrera I & Capote A (2002) Sugarcane somatic embryo production in bioreactors: Effect of partial oxygen pressure, germination in temporary immersion systems and field studies of regenerated plants. First International Symposium on “Liquid Systems for in vitro Mass Propagation of Plants” (p. 143) Agricultural University of Norway, 29 May–2 June

    Google Scholar 

  • Lorenzo JC, González BL, Escalona M, Teisson C, Espinosa P & Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 54: 197–200

    Google Scholar 

  • Mc Alister B, Finnie J, Watt MP & Blakeway F (2002) Use of temporary immersion system (RITA ®) for the production of commercial Eucalyptus clones at Mondi Forests (SA). First International Symposium on “Liquid Systems for in vitro Mass Propagation of Plants” (p. 79). Agricultural University of Norway. 29 May–2 June

    Google Scholar 

  • Medero V, Rodríguez S, Borroto C, Gómez R, Lóèz J, de Feria M, García M, Ventura J & Cabrera M (2001) Sistema de inmersión temporal para producción intensiva de material de siembra de yuca. Continente Yuquero 3: 10–11

    Google Scholar 

  • Pérez J, Jiménez E & Agramonte D (1998) Aumento de la eficiencia en la propagación masiva. In: Pérez et al. (eds) Propagación y mejora genética de plantas por biotecnología (pp. 179–192). Instituto de Biotecnología de las Plantas, Santa Clara, Cuba

    Google Scholar 

  • Perez N, Jiménez E, de Feria M, Capote A, Chávez M & Quiala E (2000) Escalado productivo de microtuberculos de papa (Solanum tuberosum L var Atlantic) en sistemas de inmersión temporal y su evaluación en condiciones de campo. XIX Congreso de la Asociación Latinoamericana de la Papa, ALAP (p. 227). 28 de Febrero al 3 de Marzo. La Habana, Cuba

    Google Scholar 

  • Preil W (1991) Application of bioreactors in plant propagation. In: Debergh PC & Zimmerman RH (eds) Micropropagation: Technology and Application (pp. 426–445). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Teisson C, Alvard D, Berthouly B, Cote F, Escalant JV, Etienne H & Lartaud M (1996) Simple apparatus to perform plant tissue culture by temporary immersion. Acta Horticulturae 440: 521–526

    Google Scholar 

  • Teisson C & Alvard D (1995) A new concept of plant in vitro cultivation in liquid medium: Temporary immersion. In: Terzi M et al. (eds) Current Issues in Plant Molecular and Cellular Biology (pp. 105–110). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Teisson C & Alvard D (1999) In vitro production of potato microtubers in liquid medium using temporary immersion. Potato Research 42: 499–504

    Google Scholar 

  • Vilches J, Albany N & Gómez R (2002) Somatic embryogenesis induction in guava (Psidium guajava L.). Plant Cell Tiss. Org. Cult. (in press)

    Google Scholar 

  • Ziv M (1992) The use of growth retardants for the regulation and acclimatization of in vitro plants. In: Karssen CM, Van Loon LC & Vreugdenhil D (eds) Progress in Plant Growth Regulation (pp. 809–817). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ziv M, Ronen G & Raviv M (1998) Proliferation of meristematic clusters in disposable presterilized plastic bioreactors for the large-scale micropropagation of plants. In Vitro Cell. Dev. Biol.-Plant. 34: 152–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

González, E.J. (2005). Mass propagation of tropical crops in temporary immersion systems. In: Hvoslef-Eide, A.K., Preil, W. (eds) Liquid Culture Systems for in vitro Plant Propagation. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_12

Download citation

Publish with us

Policies and ethics