Skip to main content

General introduction: a personal reflection on the use of liquid media for in vitro culture

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Liquid Culture Systems for in vitro Plant Propagation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita M, Shigeoka T, Koizumi Y & Kawamura M (1994) Mass propagation of shoots of Stevia rebaudiana using a large scale bioreactor. Plant Cell Rep. 13: 180–183

    Google Scholar 

  • Alfermann AW, Petersen M & Fuss E (2003) Production of natural products by plant cell biotechnology: results, problems and perspectives. In: Laimer M & Rücker W (ed) Plant Tissue Culture 100 years since Gottlieb Haberlandt (pp. 153–166). Springer, Wien New York

    Google Scholar 

  • Alvard D, Cote F & Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effects of temporary immersion on explants. Plant Cell, Tiss. Org. Cult. 32: 55–60

    Google Scholar 

  • Ammirato PV & Styer DJ (1985) Strategies for large scale manipulation of somatic embryos in suspension culture. In: Zaitlin M, Day P & Hollaender A (eds) Biotechnology in Plant Science: Relevance to Agriculture in the Eigthies (pp. 161–178). Academic Press, New York

    Google Scholar 

  • Arditti J & Ernst R (1993) Micropropagation of Orchids. John Wiley & Sons, Inc. New York

    Google Scholar 

  • Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry 30 — Somatic embryogenesis and synthetic seed Vol I (pp. 114–125). Springer, Berlin

    Google Scholar 

  • Bapat VA, Fulzele DP, Heble MR & Rao PS (1990) Production of sandalwood somatic embryos in bioreactors. Current Science 59: 746–748

    Google Scholar 

  • Barbon-Rodriguez R (2001) Efecto del dioxido de carbono sobre la embriogenesis somatica de Coffea arabica L. cv. Caturra rojo y Clematis tangutica K. Tesis, Universidad Central de las Villas, Cuba

    Google Scholar 

  • Barz W, Reinhard E & Zenk MH (1977) Preface. In: Barz W, Reinhard E & Zenk MH (eds) Plant Tissue and Its Bio-technical Application (pp. V–VI). Springer, Berlin

    Google Scholar 

  • Ben-Jaacov J & Langhans RW (1972) Rapid multiplication of Chrysanthemum plants by stem-tip proliferation. HortScience 7: 289–290

    Google Scholar 

  • Bergervoet JHW, van der Mark F & Custers JBM (1989) Organogenesis versus embryogenesis from long-term suspension cultures of cucumber (Cucumis sativus L.). Plant Cell Rep. 8: 116–119

    Google Scholar 

  • Bergmann L (1959) A new technique for isolating and cloning cells of higher plants. Nature 184: 648–649

    Google Scholar 

  • Bergmann L (1960) Growth and division of single cells of higher plants in vitro. J. General Physiol. 43: 841–851

    Google Scholar 

  • Berthouly M & Etienne H (2004) Temporary immersion system: a new concept for use liquid medium in mass propagation. (This volume pp. 161–190

    Google Scholar 

  • Bieniek ME, Harrell RC & Cantliffe DJ (1995) Enhancement of somatic embryogenesis of Ipomoea batatas in solid cultures and production of mature somatic embryos in liquid cultures for application to a bioreactor production system. Plant Cell, Tiss. Org. Cult. 41: 1–8

    Google Scholar 

  • Bobilioff-Preisser W (1917) Beobachtungen an isolierten Palisaden-und Schwamm parenchymzellen. Beihefte Bot. Centralbl. 33: 248–274

    Google Scholar 

  • Brown DCW, Finstad KI & Watson EM (1995) Somatic embryogenesis in herbaceous dicots. In: Thorpe TA (ed) In vitro embryogenesis in plants (pp. 345–416). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Butcher ND (1977) Secondary products in tissue culture. In: Reinert J & Bajaj YPS (eds) Plant Cell, Tissue and Organ Culture (pp. 667–693). Springer, Berlin

    Google Scholar 

  • Cabasson C, Alvard D, Dambier D, Ollitrault P & Teisson C (1997) Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell. Tiss. Org. Cult. 50: 33–37

    Google Scholar 

  • Cervelli R & Senaratna T (1995) Economic aspects of somatic embryogenesis. In: Aitken-Christie J, Kozai T & Smith MAL (eds) Automation and Environmental Control in Plant Tissue Cultures (pp. 29–64). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Chu CY, Knight SL & Smith MAL (1993) Effect of liquid culture on the growth and development of miniature rose (Rosa chinensis Jacq. ‘Minima’). Plant Cell, Tiss. Org. Cult. 32: 329–334

    Google Scholar 

  • Denchev PD, Kuklin AI, & Scragg AH (1992) Somatic embryo production in bioreactors. J. Biotechnology 26: 99–109

    Google Scholar 

  • Douglas GC (1984) Propagation of eight cultivars of Rhododendron in vitro using agar-solidified and liquid media and direct rooting of shoots in vivo. Scientia Horticulturae 24: 337–347

    Google Scholar 

  • Dudits D, Györgyey J, Bögre L & Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro Embryogenesis in Plants (pp. 267–308). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dunstan DI, Tautorus TE & Thorpe TA (1995) Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro Embryogenesis in Plants (pp. 471–538). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Earle ED & Langhans RW (1974a) Propagation of Chrysanthemum in vitro: I. Multiple plantlets from shoot tips and the establishment of tissue cultures. J. Amer. Soc. Hort. Sci. 99: 128–131

    Google Scholar 

  • Earle ED & Langhans RW (1974b) Propagation of Chrysanthemum in vitro: II. Production, growth, and flowering of plantlets from tissue culture. J. Amer. Soc. Hort.Sci. 99: 352–358

    Google Scholar 

  • Earle ED & Langhans RW (1975) Carnation propagation from shoot tips cultured in liquid medium. HortScience 10: 608–610

    Google Scholar 

  • Escalant JV, Teisson C & Cote F (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell. Dev. Biol. 30: 181–186

    Google Scholar 

  • Escalona M, Lorenzo JC, Gonzalez B, Daquinta M, Gonzalez JL, Desjardins Y & Borroto CG (1999) Pineapple (Ananas comosus L. Merr.) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743–748

    Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferriere N, Carron MP, Berthouly M & Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg. using the temporary immersion technique. In Vitro Cell. Dev. Biol. 33: 81–87

    Google Scholar 

  • Etienne H & Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell, Tiss. Org. Cult. 69: 215–231

    Google Scholar 

  • Etienne-Barry D, Bertrand B, Vasquez N & Etienne H (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep. 19: 111–117

    Google Scholar 

  • Fiedler H (1938/39) Die pflanzliche Gewebe-und Organkultur. Sammelreferat. Z. Bot. 33: 369–416

    Google Scholar 

  • Gautheret R (1939) Sur la possibilité de realiser la culture indéfinie des tissus de tubercules de carotte. C.R. Acad. Sci. Paris 208: 118–120.

    Google Scholar 

  • Gautheret RJ (1982) Plant tissue culture: the history. In: Fujiwara A (ed) Plant Tissue Culture (pp. 7–12). Proc. 5th Intl. Cong. Plant Tissue & Cell Culture, Tokyo 1982

    Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture: A personal account. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics, Vol. 2 Cell Growth, Nutrition, Cytodifferentiation and Cryopreservation (pp. 1–59). Acad. Press, Inc. Orlando, San Diego, New York

    Google Scholar 

  • Gupta PK & Timmis R (2004) Mass propagation of conifer trees in liquid cultures. Progress towards commercialization. This volume (pp. 379–392)

    Google Scholar 

  • Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 3: 69–92; translated by Krikorian AD & Berquam DL 1969: Experiments on the culture of isolated plant cells. Bot. Rev. 35: 68–88

    Google Scholar 

  • Härtel O (2003) Gottlieb Haberlandt (1854–1945): a portrait. In: Laimer M & Rücker W (ed) Plant Tissue Culture 100 years since Gottlieb Haberlandt (pp. 55–66). Springer, Wien New York

    Google Scholar 

  • Harris RE & Mason EBB (1983) Two machines for in vitro propagation of plants in liquid media. Can. J. Plant Sci. 63: 311–316

    Google Scholar 

  • Henry Y, Vain P & de Buyser J (1994) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79: 45–58

    Google Scholar 

  • Heyerdahl PH, Olsen OAS & Hvoslef-Eide AK (1995) Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie J, Kozai T & Smith L (eds) Automation and Environmental Control in Plant Tissue Culture (pp. 87–123). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Höxtermann E (2003) Cellular ‘elementary organisms’ in vitro: The early vision of Gottlieb Haberlandt and its realization. In: Laimer M & Rücker W (ed) Plant Tissue Culture 100 years since Gottlieb Haberlandt (pp. 67–91). Springer, Wien New York

    Google Scholar 

  • Hohe A, Winkelmann T & Schwenkel HG (1999a) The effect of oxygen partial pressure in bioreactors on cell proliferation and subsequent differentiation of somatic embryos of Cyclamen persicum. Plant Cell Tiss. Org. Cult. 59: 39–45

    Google Scholar 

  • Hohe A, Winkelmann T & Schwenkel HG (1999b) CO2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill. and its effect on cell growth and regeneration of somatic embryos. Plant Cell Rep. 18: 863–867

    Google Scholar 

  • Hohe A, Winkelmann T & Schwenkel HG (2001) Development of somatic embryos of Cyclamen persicum Mill. in liquid culture. Gartenbauwissenschaft 66: 219–224

    Google Scholar 

  • Hosoki T & Asahira T (1980) In vitro propagation of bromeliads in liquid culture. HortScience 15: 603–604

    Google Scholar 

  • Huitema JBM, Preil W, Gussenhoven GC & Schneidereit M (1989) Methods for the selection of low-temperature tolerant mutants of Chrysanthemum morifolium Ramat. by using irradiation cell suspension cultures. I. Selection of regenerants in vivo under suboptimal temperature conditions. Plant Breeding 102: 140–147

    Google Scholar 

  • Huitema JBM, Preil W & de Jong J (1991) Methods for the selection of low-temperature tolerant mutants of Chrysanthemum morifolium Ramat. by using irradiation cell suspension cultures. III. Comparison of mutants selected with or without preselection in vitro at low-temperature. Plant Breeding 107: 135–140

    Google Scholar 

  • Ibaraki Y & Kurata K (2001) Automation of somatic embryo production. Plant Cell Tiss. Org. Cult. 59: 179–199

    Google Scholar 

  • Ingram B & Mavituna F (2000) Effect of bioreactor configuration on the growth and maturation of Picea sitchensis somatic embryo cultures. Plant Cell, Tiss. Org. Cult. 61: 87–96

    Google Scholar 

  • Jay V, Genestier S & Courduroux JC (1992) Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep. 11: 605–608

    Google Scholar 

  • Jay V, Genestier S & Courduroux JC (1994) Bioreactor studies of the effect of medium pH on carrot (Daucus carota L.) somatic embryogenesis. Plant Cell, Tiss. Org. Cult. 36: 205–209

    Google Scholar 

  • Jimenez E, Perez N, de Feria M, Barbon R, Capote A, Chavez M, Quiala E & Perez JC (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell, Tiss. Org. Cult. 59: 19–23

    Google Scholar 

  • King PJ & Street HE (1973) Growth pattern in cell cultures. In: Street HE (ed) Plant Tissue and Cell Culture (pp. 269–337). Blackwell Sci. Publ., Oxford

    Google Scholar 

  • Kohlenbach HW (1959) Streckungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata. Naturwiss. 46: 116–117

    Google Scholar 

  • Kohlenbach HW (1965) Ãœber organisierte Bildungen aus Macleaya cordata Kallus. Planta 64: 37–40

    Google Scholar 

  • Kohlenbach HW (1966) Die Entwicklungspotenzen explantierter und isolierter Dauerzellen. I. Das Streckungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata. Z. Pflanzenphysiol. 55: 142–157

    Google Scholar 

  • Kohlenbach HW (2003) The developmental potentials of isolated mesophyll cells and protoplasts. In: Laimer M & Rücker W (ed) Plant Tissue Culture 100 years since Gottlieb Haberlandt (pp. 99–103). Springer, Wien New York

    Google Scholar 

  • Kotte W (1922a) Wurzelmeristem in Gewebekultur. Ber. Dtsch. Bot. Ges. 40: 269–272

    Google Scholar 

  • Kotte W (1922b) Kulturversuche mit isolierten Wurzelspitzen. Beitr. Allg. Bot. 2: 413–434

    Google Scholar 

  • Krikorian AD & Berquam DL (1969) Plant cell and tissue cultures: The role of Haberlandt. Bot. Rev. 35: 59–88

    Google Scholar 

  • KrishnaRaj S & Vasil IK (1995) Somatic embryogenesis in herbaceous monocots. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 155–204). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lorenzo JC, Gonzalez BL, Escalona M, Teisson C, Espinosa P & Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 54: 197–200

    Google Scholar 

  • Luttmann R, Florek P & Preil W (1994) Silicone-tubing aerated bioreactors for somatic embryo production. Plant Cell, Tiss. Org. Cult. 39: 157–170

    Google Scholar 

  • McLean NL & Nowak J (1998) Inheritance of somatic embryogenesis in read clover (Trifolium pratense L.). Theoretical and Applied Genetics 97: 557–562

    Google Scholar 

  • Merkle SA, Parrott WA & Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 155–204). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Muir WH (1953) Cultural conditions favouring the isolation and growth of single cells from higher plants in vitro. Ph.D. Thesis. Univ. Wisconsins, U.S.A.

    Google Scholar 

  • Muir WH, Hildebrandt AC & Riker AJ (1958) The preparation, isolation and growth in culture of single cells from higher plants. Am. J. Bot. 45: 589–597

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nadolska-Orczyk A & Malepszy S (1989) In vitro culture of Cucumis sativus L. 7. Genes controlling plant regeneration. Theoretical and Applied Genetics 78: 836–840

    Google Scholar 

  • Nickell LG (1956) The continuous submerged cultivation of plant tissues as single cells. Proc. Natn. Acad. Sci. U.S.A. 42: 848–850

    Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. C. R. Soc. Biol. 130: 1270–1271

    Google Scholar 

  • Nomura K & Komamine A (1995) Physiological and biochemical aspects of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 249–266). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Paek KY, Chakrabarty D & Hahn EJ (2004) Application of bioreactor systems for large scale production of horticultural and medicinal plants. This volume (pp. 93–114)

    Google Scholar 

  • Pieper W & Zimmer K (1976) A simple, inexpensive apparatus for in vitro propagation of tissues. Gartenbauwissenschaft 41: 221–224

    Google Scholar 

  • Preil W, Florek P, Wix U & Beck A (1988) Towards mass propagation by use of bioreactors. Acta Horticulturae 226: 99–106

    Google Scholar 

  • Preil W (1991) Application of bioreactors in plant propagation. In: Debergh PC & Zimmerman RH (eds). Micropropagation (pp. 425–445). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Preil W, Huitema JBM & de Jong J (1991) Methods for the selection of low-temperature tolerant mutants of Chrysanthemum morifolium Ramat. by using irradiation cell suspension cultures. II. Preselection in vitro under low-temperature stress. Plant Breeding 107: 131–134

    Google Scholar 

  • Püschel AK, Schwenkel HG & Winkelmann T (2003) Inheritance of the ability for regeneration via somatic embryogenesis in Cyclamen persicum. Plant Cell, Tiss. Org. Cult. 72: 43–51

    Google Scholar 

  • Rajasekhar EW, Edwards M, Wilson SB & Street HE (1971) Studies on the growth in culture of plant cells. XI. The influence of shaking rate on the growth of suspension cultures. J. Exp. Bot. 22: 107–117

    Google Scholar 

  • Redenbaugh K (1993) Synseeds. Applications of synthetic seeds to crop improvement. CRC Press Boca Raton, Ann Arbor, London, Tokyo

    Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwissenschaften 45: 344–345

    Google Scholar 

  • Rittershaus E, Ulrich J, Weiss A & Westphal K (1989) Large scale industrial fermentation of plant cells: Experiences in cultivation of plant cells in a fermentation cascade up to a volume of 75000 litres. BioEngineering 5: 28–34

    Google Scholar 

  • Robbins WJ (1922a) Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz. 73: 376–390

    Google Scholar 

  • Robbins WJ (1922b) Effect of autolyzed yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz. 74: 59–79

    Google Scholar 

  • Shimazu T & Kurata K (1999) Relationship between production of carrot somatic embryos and dissolved oxygen concentration in liquid culture. Plant Cell, Tiss. Org. Cult. 57: 29–38

    Google Scholar 

  • Steward FC, Caplin S & Millar FK (1952) Investigations on growth and metabolism of plant cells. I. New techniques for the investigation of metabolism, nutrition and growth in undifferentiated cells. Ann. Bot. 16: 57–77

    Google Scholar 

  • Steward FC & Shantz EM (1956) The chemical induction of growth in plant tissue cultures. In: Wain RL & Wightman F (eds) The Chemistry and Mode of Action of Plant Growth Substances (ed) (pp. 165–186). Butterworths Ltd., London

    Google Scholar 

  • Steward FC, Mapes MO & Mears K (1958) Growth and organised development of cultured cells. II. Organisation in cultures grown from freely suspended cells. Amer. J. Bot. 45: 705–708

    Google Scholar 

  • Steward FC (1958) Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrot plant. Am. J. Bot. 45: 709–713

    Google Scholar 

  • Steward FC (1968) Totipotency of angiosperm cells. Its significance for morphology and embryology. Phytomorphology 17: 499–507

    Google Scholar 

  • Steward FC, Ammirato PV & Mapes MO (1970) Growth and development of totipotency cells. Some problems, procedures and perspectives. Ann. Bot. 34: 761–787

    Google Scholar 

  • Street HE (1973) Introduction. In: Street HE (ed) Plant Tissue and Cell Culture (pp. 1–10). Blackwell Sci. Publ., Oxford

    Google Scholar 

  • Stuart DA, Strickland SG & Walker KA (1987) Bioreactor production of alfalfa somatic embryos. HortScience 22: 800–803

    Google Scholar 

  • Styer DJ (1985) Bioreactor technology for plant propagation. In: Henke RR, Hughes KW, Constantin MJ & Hollaender A (eds) Tissue Culture in Forestry and Agriculture (pp. 117–130) Plenum Press, New York, London

    Google Scholar 

  • Takayama S (1991) Mass propagation of plants through shake-and bioreactor-culture techniques In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry Vol 17 (pp. 495–515). Springer Verlag, Berlin

    Google Scholar 

  • Takayama S & Akita M (1994) The types of bioreactors used for shoots and embryos. Plant Cell, Tiss. Org. Cult. 39: 147–156

    Google Scholar 

  • Takayama S & Akita M (1998) Bioreactor techniques for large-scale culture of plant propagules. Adv. Hort. Sci. 12: 93–100

    Google Scholar 

  • Tar’an B & Bowley SR (1997) Inheritance of somatic embryogenesis in orchardgrass. Crop Science 37: 1497–1502

    Google Scholar 

  • Teisson C & Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: Temporary immersion. In: Terzi M, Cella R, Falavigna A (eds) Current Issues in Plant Molecular and Cellular Biology (pp. 105–110). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tisserat B, Esan EB & Murashige T (1979) Somatic embryogenesis in angiosperms. Hortic. Rev. 1: 1–78

    Google Scholar 

  • Tisserat B & Vandercook CE (1985) Development of an automated plant culture system. Plant Cell, Tiss. Org. Cult. 5: 107–117

    Google Scholar 

  • Wan Y, Sorensen EL & Liang GH (1988) Genetic control of in vitro regeneration in alfalfa (Medicago sativa L.). Euphytica 39: 3–9

    Google Scholar 

  • Westphal K (1990) Large-scale production of new biologically active compounds in plant-cell culture. In: Nijkamp HJJ, van der Plas LHW & van Aartijk J (eds), Progress in Plant Cellular and Molecular Biology (pp. 601–608). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9: 585–600

    Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial medium. Am. J. Bot. 26: 59–64

    Google Scholar 

  • Wilson SB, King PJ & Street HE (1971) Studies on the growth in culture of plant cells. XII. A versatile system for the large scale batch or continuous culture of plant cell suspensions. J. Exp. Bot. 21: 177–207

    Google Scholar 

  • Winkelmann T, Hohe A & Schwenkel HG (1998) Establishing embryogenic suspension cultures in Cyclamen persicum ‚Purple Flamed’. Adv. Hort. Sci. 12: 25–30

    Google Scholar 

  • Yeung EC (1995) Structural and development patterns in somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 205–248). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yu KF & Pauls KP (1993) Identification of a RAPD marker associated with somatic embryogenesis in alfalfa. Plant Mol. Biol. 22: 269–277

    PubMed  Google Scholar 

  • Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW & Deus B (1977) Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Barz W, Reinhard E & Zenk MH (eds) Plant Tissue Culture and Its Bio-technical Application (pp. 27–43). Springer, Berlin

    Google Scholar 

  • Zimmer K & Pieper W (1975) Weitere Untersuchungen zur Kultur in vitro von Aechmea. Gartenbauwissenschaft 3: 129–132

    Google Scholar 

  • Ziv M (2000) Bioreactor technology for plant micropropagation. Horticultural Reviews 24: 1–30

    Google Scholar 

  • Ziv M (2004) Simple bioreactors for mass propagation of plants. This volume (pp. 77–91)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Preil, W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Hvoslef-Eide, A.K., Preil, W. (eds) Liquid Culture Systems for in vitro Plant Propagation. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_1

Download citation

Publish with us

Policies and ethics