Skip to main content

Dye and Polymer Random Lasers

  • Chapter
Solid-State Random Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 105))

  • 910 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.M. Lawandy, A.S.L. Gomes, and R.M. Balachandran, presented at the 1993 International Conference of Luminescence, University of Connecticut, Storrs, CT (1993).

    Google Scholar 

  2. N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, and E. Sauvain, Laser action in strongly scattering medium, Nature, 368: 436–438 (1994).

    Article  ADS  Google Scholar 

  3. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders, Sov. J. Quantum Electron., 16: 281–283 (1986).

    Article  ADS  Google Scholar 

  4. V.M. Markushev, N.È. Ter-Gabriélyan, Ch.M. Briskina, V.R. Belan, and V.F. Zolin, Stimulated emission kinetics of neodymium powder lasers, Sov. J. Quantum Electron., 20: 772–777 (1990).

    Article  ADS  Google Scholar 

  5. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometic crystals and powders, J. Opt. Soc. Am. B, 10: 2358–2363 (1993).

    Article  ADS  Google Scholar 

  6. V.S. Letokhov, Stimulated emission of an ensemble of scattering particles with negative absorption, [ZhETP Pis’ma 5: 262–265 (1967) Russian]. JETP Lett., 5: 212–215, (1967).

    ADS  Google Scholar 

  7. V.S. Letokhov, Quantum statistics of multi-mode radiation from an ensemble of atoms, [Zh. Eksp. i Teor. Fiz., 53: 2210–2222 (1967) Russian] Sov. Phys. JETP, 26: 1246–1251 (1968).

    ADS  Google Scholar 

  8. D.S. Wiersma, M.P. van Albada, and A. Lagendijk, Random laser? Nature 373: 203–204 (1995).

    Article  ADS  Google Scholar 

  9. V.S. Letokhov, Stimulated radio emission of the interstellar medium, [Pis’ma Zh. Eksp. i Teor. Fiz., 4: 477–481 (1966) Russian] JETP Lett., 4: 321–323 (1966).

    ADS  Google Scholar 

  10. R.V. Ambartsumyan, N.G. Basov, P.G. Kryukov, and V.S. Letokhov, Non-resonant feedback in lasers. In Progress in Quantum Electronic, Vol. 1, J.H. Sanders and K.W.H. Stevens, eds., Pergamon: New York, 107 (1970).

    Google Scholar 

  11. V.S. Letokhov, Noncoherent feedback in space masers and stellar lasers, in Amazing Light, A Volume Dedicated to Charles Hard Townes on his 80th Birthday, R.Y. Chiao, ed., Springer-Verlag: New York (1996), p. 409.

    Google Scholar 

  12. W.L. Sha, C.-H. Liu, and R.R. Alfano, Spectral and temporal measurements of laser action of rhodamine 640 dye in strongly scattering media, Opt. Lett., 19: 1922–1924 (1994).

    Article  ADS  Google Scholar 

  13. M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, and M. Mahdi, Line narrowing in the dye solution with scattering centers, Opt. Commun., 118: 430–437 (1995).

    Article  ADS  Google Scholar 

  14. G. van Soest, M. Tomita, and A. Lagendijk, Amplifying volume in scattering media, Opt. Lett., 24: 306–308 (1999).

    Article  ADS  Google Scholar 

  15. H. Cao, Y.G. Zhao, H.C. Ong, S.T. Ho, J.Y. Dai, J.Y. Wu, and R.P.H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconducor polycrystalline films, Appl. Phys. Lett., 73: 3656–3658 (1998).

    Article  ADS  Google Scholar 

  16. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H, Wang, and R.P.H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett., 82: 2278–2281 (1999).

    Article  ADS  Google Scholar 

  17. H. Cao, Y. Ling, J.Y. Xu, and A.L. Burin, Probing localized states with spectrally resolved speckle techniques, Phys. Rev. E, 66: 025601 (2002).

    Article  ADS  Google Scholar 

  18. M. Bahoura, K.J. Morris, and M.A. Noginov, Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: Effect of the pumped spot size, Opt. Commun., 201: 405–412 (2002).

    Article  ADS  Google Scholar 

  19. M. Bahoura, K.J. Morris, G. Zhu, and M.A. Noginov, Dependence of the neodymium random laser threshold on the diameter of the pumped spot, IEEE Journal of Quantum Electronics, to be published.

    Google Scholar 

  20. G. Beckering, S.J. Zilker, and D. Haarer, Spectral measurements of the emission from highly scattering gain media, Opt. Lett., 22: 1427–1429 (1997).

    Article  ADS  Google Scholar 

  21. R.M. Balachandran and N.M. Lawandy, Interface reflection effects in photonic paint, Opt. Lett., 20: 1271–1273 (1995).

    Article  ADS  Google Scholar 

  22. R.M. Balachandran and N.M. Lavandy, Understanding bichromatic emission from scattering gain media, Opt. Lett., 21: 1603–1605 (1996).

    Article  ADS  Google Scholar 

  23. R.M. Balachandran, N.M. Lawandy, and J.A. Moon, Theory of laser action in scattering gain medium, Opt. Lett., 22: 319–321 (1997).

    Article  ADS  Google Scholar 

  24. W.L. Sha, C.-H. Liu, F. Liu, and R.R. Alfano, Competition between two laser modes of sulforhodamine 640 in highly scattering media, Opt. Lett., 21: 1277–1279 (1996).

    Article  ADS  Google Scholar 

  25. M. Siddique, R.R. Alfano, G.A. Berger, M. Kempe, and A.Z. Genack, Time-resolved studies of stimulated emission from colloidal dye solutions, Opt. Lett., 21: 450–452 (1996).

    Article  ADS  Google Scholar 

  26. G.A. Berger, M. Kempe, and A.Z. Genack, Dynamics of stimulated emission from random media, Phys. Rev. E, 56: 6118–6122 (1997).

    Article  ADS  Google Scholar 

  27. M. Kempe, G.A. Berger, and A.Z. Genack, Stimulated emission from amplifying random media. In Handbook of Optical Properties, Vol. II, R.E. Hummel and P. Wißmann, eds. CRC: Boca Raton, FL (1996).

    Google Scholar 

  28. S. John and G. Pang, Theory of lasing in a multiple-scattering medium, Phys. Rev. A, 54: 3642–3652 (1996).

    Article  ADS  Google Scholar 

  29. K. Totsuka, G. van Soest, T. Ito, A. Lagendijk, and M. Tomita, Amplification and diffusion of spontaneous emission in strongly scattering medium, J. Appl. Phys., 87: 7623–7628 (2000).

    Article  ADS  Google Scholar 

  30. D.S. Wiersma and A. Lagendijk, Light diffusion with gain and random lasers, Phys. Rev. E, 54: 4256–4265 (1996).

    Article  ADS  Google Scholar 

  31. G. van Soest, F.J. Poelwijk, R. Sprik, and A. Lagendijk, Dynamics of a random laser above threshold, Phys. Rev. Lett., 86: 1522–1525 (2001).

    Article  ADS  Google Scholar 

  32. J. Herrmann and B. Wilhelmi, Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers, Appl. Phys. B, 66: 305–312 (1998).

    Article  ADS  Google Scholar 

  33. H. Cao, Random lasers with coherent feedback. In Optical Properties of Nanostructured Random Media, V.M. Shalaev, ed., Springer: New York (2002).

    Google Scholar 

  34. H. Cao, J.Y. Xu, S.-H. Chang, and S.T. Ho, Transition from amplified spontaneous emission to laser action in strongly scattering medium, Phys. Rev. E, 61: 1985–1989 (2000).

    Article  ADS  Google Scholar 

  35. S. Mujumdar, M. Ricci, R. Torre, D. Wiersma, Amplified path length modes in random lasers, Phys. Rev. Lett., 93: 053903/1–4 (2004).

    Article  ADS  Google Scholar 

  36. R.M. Balachandran, A. Pacheco, and N.M. Lawandy, Photonic textile fibers. In Conference on Lasers and Electro-Optics, Vol. 15, 1995 OSA Technical Digest Series, Optical Society of America: Washington, DC (1995), pp. 114–115.

    Google Scholar 

  37. S. Larochelle, P. Mathieu, V. Larochelle, and J. Dubois, Long range interrogation of laser paints for identification applications. In Conference on Lasers and Electro-Optics, Vol. 11, 1997 OSA Technical Digest Series, Optical Society of America: Washington, DC (1997), p. 143.

    Google Scholar 

  38. D. Braun and A.J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 58: 1982–1984 (1991).

    Article  ADS  Google Scholar 

  39. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlung, and W.R. Salaneck, Electroluminescence in conjugated polymers, Nature, 397: 121–128 (1999).

    Article  ADS  Google Scholar 

  40. F. Hide, B.J. Schwartz, M.A. Diaz-Garsia, and A.J. Heeger, Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals, Chem. Phys. Lett., 256: 424–430 (1996).

    Article  ADS  Google Scholar 

  41. F. Hide, M.A. Días-García, B.J. Schwartz, and A.J. Heeger, New developments in the photonic applications of conjugated polymers, Acc. Chem. Res., 30: 430–436 (1997).

    Article  Google Scholar 

  42. F. Hide, B.J. Schwartz, M.A. Días-García, and A.J. Heeger, Conjugated polymers as solid-state laser materials, Synth. Metals, 91: 35–40 (1997).

    Article  Google Scholar 

  43. S.V. Frolov, M. Ozaki, W. Gellerman, Z.V. Vardeny, and K. Yoshino, Mirrorless lasing in conducting polymer poly(2,5-dioctyloxy-pphenylevinylene) films, Jpn. J. Appl. Phys., Part 2, 35: L1371–L1371 (1996).

    Article  ADS  Google Scholar 

  44. C.W. Lee, K.S. Wong, J.D. Huang, S.V. Frolov, and Z.V. Vardeny, Femtosecond time-resolved laser action in poly(p-phenylene vinylene) films: Stimulated emission in an inhomogeneously broadened exciton distribution, Chem. Phys. Lett., 314: 564–569 (1999).

    Article  ADS  Google Scholar 

  45. R.C. Polson, A. Chipoline, and Z.V. Vardeny, Random lasing in π-conjugated films and infiltrated opals, Adv. Mater., 13: 760–764 (2001).

    Article  Google Scholar 

  46. S.V. Frolov, Z.V. Vardeny, K. Yoshino, A. Zakhidov, and R.H. Baughman, Stimulated emission in high-gain organic media, Phys. Rev. B, 59: R5284–R5287 (1999).

    Article  ADS  Google Scholar 

  47. S.V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z.V. Vardeny, Lasing and stimulated emission in π-conjugated polymers, IEEE J. Quantum Electron., 36: 2–11 (2000).

    Article  ADS  Google Scholar 

  48. R.C. Polson, J.D. Huang, and Z.V. Vardeny, Random lasers in π-conjugated polymer films, Synth. Metals, 119: 7–12 (2001).

    Article  Google Scholar 

  49. R.C. Polson, J.D. Huang, and Z.V. Vardeny, Analysis of random lasers in thin films of π-conjugated polymers. In Photonic Crystals and Light Localization in the 21st Century, C.M. Soukoulis, ed., Kluwer: Dordrecht, The Netherlands (2001).

    Google Scholar 

  50. Y. Ling, H. Cao, A.L. Burin, M.A. Ratner, X. Liu, and R.P.H. Chang, Investigation of random lasers with resonant feedback, Phys. Rev. A, 64: 063808 (2001).

    Article  ADS  Google Scholar 

  51. F. Hide, M.A. Días-García, B.J. Schwartz, M.R. Andersson, Q. Pei, and A.J. Heeger, Semiconducting polymers: A new class of solid-state laser materials, Science, 273: 1833–1836 (1996).

    Article  ADS  Google Scholar 

  52. M.A. Días-García, F. Hide, B.J. Schwartz, M.R. Andersson, A.J. Heeger, and Q. Pei, Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials, Synth. Metals, 84: 455–462 (1997).

    Article  Google Scholar 

  53. H.J. Brouwer, V.V. Krasnikov, A. Hilberer, and G. Hadziioannou, Blue superradiance from neat semiconducting alternating copolymer films, Adv. Mater., 8: 935–940 (1996).

    Article  Google Scholar 

  54. G. Gelink, J.W. Warman, M. Remmers, and D. Neher, Narrow band emission in conjugated polymer films, Chem. Phys. Lett., 265: 320–326 (1997).

    Article  ADS  Google Scholar 

  55. X. Long, A. Malinowski, D.D.C. Bradley, M. Inbasekaran, and E.P. Woo, Emission processes in conjugated polymer solutions and thin films, Chem. Phys. Lett., 272:6–12 (1997).

    Article  ADS  Google Scholar 

  56. N. Tessler, G.J. Denton, and R.H. Friend, Lasing from conjugated-polymer microcavities, Nature, 382: 695–697 (1996).

    Article  ADS  Google Scholar 

  57. M.A. Días-García, F. Hide, B.J. Schwartz, M.D. McGehee, M.R. Andersson, and A.J. Heeger, “Plastic” lasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities, Appl. Phys. Lett., 70: 3191–3193 (1997).

    Article  ADS  Google Scholar 

  58. C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, Blue green stimulated emission from a high gain conjugated polymer, Appl. Phys. Lett., 71: 2566–2568 (1997).

    Article  ADS  Google Scholar 

  59. S.V. Frolov, M. Shkunov, K. Yoshino, and Z.V. Vardeny, Ring microlasers from conjugated polymers, Phys. Rev. B, 56: R4363–R4366 (1997).

    Article  ADS  Google Scholar 

  60. S.V. Frolov, Z.V. Vardeny, and K. Yoshino, Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions, Phys. Rev. B, 57: 9141–9147 (1998).

    Article  ADS  Google Scholar 

  61. B.J. Schwartz, F. Hide, M.R. Andersson, and A.J. Heeger, Ultrafast studies of stimulated emission in solid films of conjugated polymers, Chem. Phys. Lett., 265: 327–333 (1996).

    Article  Google Scholar 

  62. S.V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, and Z.V. Vardeny, Cooperative emission in π-conjugated polymer thin films, Phys. Rev. Lett., 78: 729–732 (1997).

    Article  ADS  Google Scholar 

  63. C. Liu, J. Liu, J. Zhang, and K. Dou, Random lasing with scatterers of diameters 20 nm in an active medium, Optics Communications, 244: 299–303 (2005).

    Article  ADS  Google Scholar 

  64. K.S. Wong, H. Wang, and G. Lanzani, Ultrafast excited-state planarization of the hexamethylsexithiophene oligomer studied by femtosecond time-resolved photoluminescence, Chem. Phys. Lett., 288: 59–64 (1998).

    Article  ADS  Google Scholar 

  65. O. Svelto, Principles of Lasers, 4th ed., D.C. Hanna, trans. and ed., Plenum: New York (1998).

    Google Scholar 

  66. A. Yariv, Quantum Electronics, 3d ed., Wiley: New York (1989).

    Google Scholar 

  67. W. Koechner, Solid-State Laser Engineering, 5th rev. updated ed., Springer-Verlag: New York (1999).

    MATH  Google Scholar 

  68. V.M. Markushev, N.È. Ter-Gabriélyan, Ch.M. Briskina, V.R. Belan, and V.F. Zolin, Stimulated emission kinetics of neodymium powder lasers, Sov. J. Quantum Electron., 20: 772–777 (1990).

    Article  ADS  Google Scholar 

  69. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometic crystals and powders, J. Opt. Soc. Am. B, 10: 2358–2363 (1993).

    Article  ADS  Google Scholar 

  70. M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals, J. Opt. Soc. Am. B, 13: 2024–2033 (1996).

    Article  ADS  Google Scholar 

  71. C.M. Soukoulis, X. Jiang, J.Y. Xu, and H. Cao, Dynamic response and relaxation oscillations in random lasers, Phys. Rev. B, 65: 041103 (2002).

    Article  ADS  Google Scholar 

  72. M.A. Noginov, J. Novak, and S. Williams, Modeling of photon density dynamics in random lasers, Phys. Rev. A, 70: 063810 (2004) (5 pages).

    Article  ADS  Google Scholar 

  73. S.V. Frolov, Z.V. Vardeny, A.A. Zakhidov, and R.H. Baughman, Laser-like emission in opal photonic crystals, Opt. Commun., 162: 241–246 (1999).

    Article  ADS  Google Scholar 

  74. K. Yoshiko, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A. Zakhidov, and Z.V. Vardeny, Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals, Appl. Phys. Lett., 74: 2590–2592 (1999).

    Article  ADS  Google Scholar 

  75. M.N. Shkunov, Z.V. Vardeny, M.C. DeLong, R.C. Polson, A.A. Zakhidov, and R.H. Baughman, Tunable, gap-state lasing in switchable directions for opal photonic crystals, Adv. Function. Mater., 12: 21–26 (2002).

    Article  Google Scholar 

  76. G. Zacharakis, N.A. Papadogiannis, G. Filippidis, and Th.G. Papazoglou, Photon statistics of laser-like emission from polymeric scattering gain media, Opt. Lett., 25: 923–925 (2000).

    Article  ADS  Google Scholar 

  77. J.W. Goodman, Statistical Optics, Wiley: New York (2000).

    Google Scholar 

  78. R. Loudon, The Quantum Theory of Light, 2d ed., Oxford University Press: Oxford (1983).

    Google Scholar 

  79. R.C. Polson, M.E. Raikh, and Z.V. Vardeny, Universal properties of random lasers, IEEE J. Select. Topics Quantum Electron., 9: 120–123 (2003).

    Article  Google Scholar 

  80. R.C. Polson, M.E. Raikh, and Z.V. Vardeny, Random lasing from weakly scattering media: Spectrum universality in DOO-PPV polymer films, Physica E, 13: 120–1242 (2002).

    Article  Google Scholar 

  81. R.C. Polson, M.E. Raikh, and Z.V. Vardeny, Universality in unintentional laser resonators in p-conjugated polymer films, C.R. Physique, 3: 509–521 (2002).

    Article  ADS  Google Scholar 

  82. R.C. Polson, G. Levina, and Z.V. Vardeny, Spectral analysis of polymer microring lasers, Appl. Phys. Lett., 76: 3858–3860 (2000).

    Article  ADS  Google Scholar 

  83. H.P. Weber and R. Ulrich, A thin-film ring laser, Appl. Phys. Lett., 19: 38–40 (1971).

    Article  ADS  Google Scholar 

  84. N.V. Karlov, Lectures in Quantum Electronics, CRC: Boca Raton, FL (1993).

    Google Scholar 

  85. D. Hofstetter and R.L. Thornton, Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra, Appl. Phys. Lett., 72: 404–406 (1998).

    Article  ADS  Google Scholar 

  86. D. Hofstetter and R.L. Thornton, Theory of loss measurements of Fabry-Perot resonators by Fourier analysis of the transmission spectra, Opt. Lett., 22: 1831–1833 (1997).

    Article  ADS  Google Scholar 

  87. V.M. Apalkov, M.E. Raikh, and B. Shapiro, Random resonators and prelocalized modes in disordered dielectric films, Phys. Rev. Lett., 89: 016802 (2002).

    Article  ADS  Google Scholar 

  88. Y. Yamamoto and R.E. Slusher, Optical processes in microcavities, Phys. Today, 66–73 (June 1993).

    Google Scholar 

  89. C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivko, and A.Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science, 280: 1556–1564 (1998).

    Article  ADS  Google Scholar 

  90. H. Cao, J.Y. Xu, Y. Ling, S.-H. Chang, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, Random lasers with coherent feedback, Photonic Crystals and Light Localization in the 21st Century, C.M. Soukoulis, ed., Kluwer: Dordrecht, The Netherlands (2001).

    Google Scholar 

  91. H. Cao, Y. Xu, Y. Ling, A.L. Burin, E.W. Seeling, X. Liu, and R.H.P. Chang, Random lasers with coherent feedback, IEEE J. Quantum Electron., 9: 111–119 (2003).

    Article  Google Scholar 

  92. M.A. Noginov, G. Zhu, A.A. Frantz, J. Novak, S.N. Williams, and I. Fowlkes, Dependence of NdSc3(BO3)4 random laser parameters on particle size, JOSAB, 21: 191–200 (2004).

    Article  ADS  Google Scholar 

  93. A.L. Burin, private communication.

    Google Scholar 

  94. X. Jiang and C.M. Soukoulis, Time-dependent theory for random lasers, Phys. Rev. Lett., 85: 70–73 (2000).

    Article  ADS  Google Scholar 

  95. A.E. Siegman, Lasers, University Science Books: Mill Valley, CA (1986), Chapters 2,3,6,13.

    Google Scholar 

  96. A. Maitland and H.M. Dunn, Laser Physics, North-Holland: Amsterdam (1969), Chapter 9.

    Google Scholar 

  97. M. Siddique, L. Yang, Q.Z. Wang, and R.R. Alfano, Mirrorless action from optically pumped dye-treated animal tissues, Opt. Commun., 117: 475–479 (1995).

    Article  ADS  Google Scholar 

  98. R.C. Polson and Z.V. Vardeny, Random lasing in human tissues, Applied Physics Letters, 85: 1289–1291 (2004).

    Article  ADS  Google Scholar 

  99. D.S. Wiersma and S. Cavalierit, Light emission:A temperature-tunable random laser, Nature, 414: 708–709 (2001).

    Article  ADS  Google Scholar 

  100. D.S. Wiersma, M. Colocci, R. Righini, and F. Aliev, Temperature-controlled light diffusion in random media, Phys. Rev. B, 64: 144208/1–6 (2001).

    Article  ADS  Google Scholar 

  101. D.S. Wiersma and S. Cavalieri, Temperature-controlled random laser action in liquid crystal infiltrated systems, Phys. Rev. E, 66: 56612/1–5 (2002).

    Article  ADS  Google Scholar 

  102. S. Cavalieri and D.S. Wiersma, Temperature-tunable random lasing: Numerical calculations and experiments, JOSA B, 21: 201–207 (2004).

    Article  ADS  Google Scholar 

  103. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D.S. Wiersma, Quasi-two-dimensional diffusive random laser action, Phys. Rev. Lett., 93: 263901/1–4 (2004).

    Article  ADS  Google Scholar 

  104. V. Milner and A.Z. Genack, Photon localization laser, Phys. Rev. Lett., to be published; A.Z. Genack and V. Milner, Photon localization laser, Presented at the SPIE 49th Annual Meeting, 2–4 August, 2004, Denver, CO, paper #5508-32.

    Google Scholar 

  105. Y. Feng and K. Ueda, Random stack of resonant dielectric layers as a laser system, Optics Express, 12: #15 (2004).

    Google Scholar 

  106. H.-M. Tzeng, K.F. Wall, M.B. Long, and R.K. Chang, Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances, Opt. Lett., 9: 499–501 (1984).

    Article  ADS  Google Scholar 

  107. H.-B. Lin, A.L. Huston, B.L. Justus, and A.L. Campillo, Some characteristics of a droplet whispering-gallery-mode laser, Opt. Lett., 11: 614–616 (1986).

    Article  ADS  Google Scholar 

  108. A. Biswas, H. Latifi, R.L. Armstrong, and R.G. Pinnick, Time-resolved spectroscopy of laser emission from dye-doped droplets, Opt. Lett., 14: 214–216 (1989).

    Article  ADS  Google Scholar 

  109. H. Latifi, A. Biswas, R.L. Armstrong, and R.G. Pinnick, Lasing and stimulated Raman scattering in spherical liquid droplets: Time, irradiance, and wavelength dependence, Appl. Opt., 29: 5387–5392 (1990).

    Article  ADS  Google Scholar 

  110. A.J. Campillo, J.D. Eversole, and H.-B. Lin, Cavity electrodynamic enhancement of stimulated emission in microdroplets, Phys. Rev. Lett., 67: 437–440 (1991).

    Article  ADS  Google Scholar 

  111. R.L. Armstrong, J.-G. Xie, T.E. Ruekgauer, and R.G. Pinnick, Energy-transfer-assisted lasing from microdroplets seeded with fluorescent sol, Opt. Lett., 17: 943–945 (2002).

    Article  ADS  Google Scholar 

  112. R.L. Armstrong, J.-C. Xe, T.E. Ruckgauer, J. Gu, R.G. Pinnick, Effect of submicrometer-sized particles on microdroplet lasing, Opt. Lett., 18: 119–121 (1993).

    Article  ADS  Google Scholar 

  113. R.C. Polson and Z.V. Vardeny, Multiple resonances in microdisc lasers of π-conjugated polymers, Appl. Phys. Lett., 81: 1561–1563 (2002).

    Article  ADS  Google Scholar 

  114. W. Kim, V.P. Safonov, V.M. Shalaev, and R.L. Armstrong, Fractals in microcavities: Giant coupled, multiplicative enhancement of optical resonances, Phys. Rev. Lett., 82: 4811–4814 (1999).

    Article  ADS  Google Scholar 

  115. W.T. Kim, V.P. Safonov, V.P. Drachev, V.A. Podolskiy, V.M. Shalaev, and R.L. Armstrong, Fractal-microcavity composites: Giant optical responses. In Optical Properties of Nanostructured Random Media, V.M. Shalaev, ed., Springer: New York (2002).

    Google Scholar 

  116. V.P. Drachev, W.-T. Kim, V.P. Safonov, V.A. Podolskiy, N.S. Zakovryashin, E.N. Khaliullin, V.M. Shalaev, and R.L. Armstrong, Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity, J. Mod. Opt., 49: 645–662 (2002).

    Article  ADS  Google Scholar 

  117. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer: New York (2000).

    Google Scholar 

  118. V.M. Shalaev, Optical nonlinearities of fractal composites. In Optical Properties of Nanostructured Random Media, V.M. Shalaev, ed., Springer: New York (2002).

    Chapter  Google Scholar 

  119. V.P. Drachev, S.P. Perminov, S.G. Rautian, and V.P. Safonov, Nonlinear optical effects and selective photomodification of colloidal silver aggregates. In Optical Properties of Nanostructured Random Media, V.M. Shalaev, ed., Springer: New York (2002).

    Google Scholar 

  120. N.M. Lawandy, Localized surface plasmon singularities in amplifying media, Appl. Phys. Lett., 85: 5040–5042 (2004).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Dye and Polymer Random Lasers. In: Solid-State Random Lasers. Springer Series in Optical Sciences, vol 105. Springer, New York, NY. https://doi.org/10.1007/0-387-25105-7_8

Download citation

Publish with us

Policies and ethics