Skip to main content

Theoretical Modeling of Neodymium Random Lasers

  • Chapter
Solid-State Random Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 105))

  • 850 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Letokhov, Stimulated emission of an ensemble of scattering particles with negative absorption [ZhETF Pis’ma, 5: 262–265 Russian], JETP Lett., 5: 212–215 (1967).

    ADS  Google Scholar 

  2. V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption [Zh. Exp. and Teor. Fiz., 53: 1442–14452 Russian], Sov. Phys. JETP, 26: 835–840 (1968).

    ADS  Google Scholar 

  3. R.V. Ambartsumyan, N.G. Basov, P.G. Kryukov, and V.S. Letokhov, Non-resonant feedback in lasers. In Progress in Quantum Electronic, Vol. 1, J.H. Sanders and K.W.H. Stevens, eds., Pergamon: New York (1970), p. 107.

    Google Scholar 

  4. C.W. Beenakker, J.C.J. Paasschens, and P.W. Brouwer, Probability of reflection by a random laser, Phys. Rev. Lett., 76: 1368–1371 (1996).

    Article  ADS  Google Scholar 

  5. X. Jiang, Q. Li, and C.M. Soukoulis, Symmetry between absorption and amplification in disordered media, Phys. Rev. B, 59: R9007–R9010 (1999).

    Article  ADS  Google Scholar 

  6. M. Patra and C.W.J. Beenakker, Excess noise for coherent radiation propagating through amplifying random media, Phys. Rev. A, 60: 4059–4066 (1999).

    Article  ADS  Google Scholar 

  7. O. Svelto, Principles of Lasers, 4th ed., D.C. Hanna, trans. and ed. Plenum: New York (1998).

    Google Scholar 

  8. A. Yariv, Quantum Electronics, 3rd ed., Wiley: New York (1989).

    Google Scholar 

  9. W. Koechner, Solid-State Laser Engineering, 5th revised and updated ed., Springer-Verlag: New York (1999).

    MATH  Google Scholar 

  10. G. van Soest, F.J. Poelwijk, R. Sprik, and A. Lagendijk, Dynamics of a random laser above threshold, Phys. Rev. Lett., 86: 1522–1525 (2001).

    Article  ADS  Google Scholar 

  11. R.V. Ambartsumyan, P.G. Kryukov, and V.S. Letokhov, Dynamics of emission line narrowing for a laser with nonresonant feedback, [Zh. Eksp. i Teor. Fiz., 51: 1669–1675 (1966) Russian] Sov. Phys. JETP, 24: 1129–1134 (1967).

    ADS  Google Scholar 

  12. V.M. Markushev, N.È. Ter-Gabriélyan, Ch.M. Briskina, V.R. Belan, and V.F. Zolin, Stimulated emission kinetics of neodymium powder lasers, Sov. J. Quantum Electron., 20: 772–777 (1990).

    Article  ADS  Google Scholar 

  13. F. Auzel and P. Goldner, Coherent light sources with powder: Stimulated amplification versus super-radiance, J. Alloys Compounds, 300–301: 11–17 (2000).

    Article  Google Scholar 

  14. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometic crystals and powders, J. Opt. Soc. Am. B, 10: 2358–2363 (1993).

    Article  ADS  Google Scholar 

  15. N.È. Ter-Gabriélyan, V.M. Markushev, V.R. Belan, Ch.M. Briskina, and V.F. Zolin, Stimulated emission spectra of powders of double sodium and lanthanum tetramlybdate, Sov. J. Quantum Electron., 21: 32–33 (1991).

    Article  ADS  Google Scholar 

  16. Ch.M. Briskina, V.M. Markushev, and N.È. Ter-Gabriélyan, Use of a model of coupled microcavities in the interpretation of experiments on powder lasers, Quantum Electron., 26: 923–927 (1996).

    Article  ADS  Google Scholar 

  17. N.T. Melamed, Optical properties of powders. Part I. Optical absorption coefficients and the absolute value of the diffuse reflectance. Part II. Properties of luminescent powders. J. Appl. Phys., 34: 560–570 (1963).

    Article  ADS  Google Scholar 

  18. M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals, J. Opt. Soc. Am. B, 13: 2024–2033 (1996). M.A. Noginov, N.E. Noginova, H.J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, Stimulated emission without cavity in powders and single crystals of Nd doped materials. In OSA Trends in Optics and Photonics on Advanced Solid State Lasers, Vol. 1 S.A. Payne and C.R. Pollock, eds., Optical Society of America: Washington, DC (1996), pp. 585–590.

    Article  ADS  Google Scholar 

  19. S.T. Durmanov, O.V. Kuzmin, G.M. Kuzmiheva, S.A. Kutovoi, A.A. Martynov, E.K. Nesynov, V.L. Panyutin, Yu.P. Rudnitsky, G.V. Smirnov, and V.I. Chizhikov, Binary rare-earth scandium borates for diode-pumped lasers, Opt. Mater., 18: 243–284 (2001).

    Article  Google Scholar 

  20. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders, Sov. J. Quantum Electron., 16: 281–283 (1986).

    Article  ADS  Google Scholar 

  21. C.M. Soukoulis, X. Jiang, J.Y. Xu, and H. Cao, Dynamic response and relaxation oscillations in random lasers, Phys. Rev. B, 65: 041103 (2002).

    Article  ADS  Google Scholar 

  22. M.A. Noginov, I. Fowlkes, G. Zhu, and J. Novak, Neodymium random lasers operating in different pumping regimes, J. Modern Optics, 51: 2543–2553 (2004).

    Article  MATH  ADS  Google Scholar 

  23. M.A. Noginov, I.N. Fowlkes, G. Zhu, and J. Novak, Random laser thresholds in cw and pulsed regimes, Phys. Rev. A, 70: 043811/1–5 (2004).

    ADS  Google Scholar 

  24. G. Williams, B. Bayram, S.C. Rand, T. Hinklin, and R.M. Laine, Laser action in strongly scattering rare-earth-doped dielecric nanophosphors, Phys. Rev. A, 65: 013807 (2001).

    Article  ADS  Google Scholar 

  25. Y. Ling, H. Cao, A.L. Burin, M.A. Ratner, X. Liu, and R.P.H. Chang, Investigation of random lasers with resonant feedback, Phys. Rev. A, 64: 063808 (2001).

    Article  ADS  Google Scholar 

  26. X. Jiang and C.M. Soukoulis, Transmission and reflection studies of periodic and random systems with gain, Phys. Rev. B, 59: 6159–6166 (1999).

    Article  ADS  Google Scholar 

  27. Q. Li, K.M. Ho, and C.M. Soukoulis, Mode distribution in coherently amplifying laser medium, Physica B, 296: 78–84 (2001).

    Article  ADS  Google Scholar 

  28. G.A. Berger, M. Kempe, and A.Z. Genack, Dynamics of stimulated emission from random media, Phys. Rev. E, 56: 6118–6122 (1997).

    Article  ADS  Google Scholar 

  29. M.A. Noginov, G. Zhu, A.A. Frantz, J. Novak, S.N. Williams, and I. Fowlkes, Dependence of NdSc3(BO3)4 random laser parameters on particle size, JOSA B, 21: 191–200 (2004).

    Article  ADS  Google Scholar 

  30. M.A. Noginov, J. Novak, and S. Williams, Modeling of photon density dynamics in random lasers, Phys. Rev. A, 70: 063810/1–5 (2004).

    Article  ADS  Google Scholar 

  31. X. Jiang and C.M. Soukoulis, Theory and simulations of random lasers. In Photonic Crystals and Light Localization in the 21st Century, C.M. Soukoulis, ed., NATO Science Series, Series C: Mathematical and Physical Sciences, Vol. 563, Kluwer Academic: Boston (2001), pp. 417–433.

    Google Scholar 

  32. X. Jiang and C.M. Soukoulis, Time-dependent theory for random lasers, Phys. Rev. Lett., 85: 70–73 (2000).

    Article  ADS  Google Scholar 

  33. S.C. Rand, Strong localization if light and photonic atoms, Can. J. Phys., 78: 625–637 (2000).

    Article  ADS  Google Scholar 

  34. H. Cao, Y. Ling, J.Y. Xu, and A.L. Burin, Probing localized states with spectrally resolved speckle techniques, Phys. Rev. E, 66: 025601(R) (2002).

    Article  ADS  Google Scholar 

  35. C.W. Lee, K.S. Wong, J.D. Huang, S.V. Frolov, and Z.V. Vardeny, Femtosecond time-resolved laser action in poly (p-phenylene vinylene) films: Stimulated emission in an inhomogeneously broadened exciton distribution, Chem. Phys. Lett., 314: 564–569 (1999).

    Article  ADS  Google Scholar 

  36. G. van Soest, M. Tomita, and A. Lagendijk, Amplifying volume in scattering media, Opt. Lett., 24: 306–308 (1999).

    Article  ADS  Google Scholar 

  37. K. Totsuka, G. van Soest, T. Ito, A. Lagendijk, and M. Tomita, Amplification and diffusion of spontaneous emission in strongly scattering medium, J Appl. Phys., 87: 7623–7628 (2000).

    Article  ADS  Google Scholar 

  38. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1, Academic: New York (1978), p. 250.

    Google Scholar 

  39. D.S. Wiersma and A. Lagendijk, Light diffusion with gain and random lasers, Phys. Rev. E, 54: 4256–4265 (1996).

    Article  ADS  Google Scholar 

  40. M.A. Noginov, M. Bahoura, N. Noginova, and V.P. Drachev, Study of absorption and reflection in solid-state random laser, Applied Optics, 43: 4237–4243 (2004).

    Article  ADS  Google Scholar 

  41. B.A.L. Burin, private communication.

    Google Scholar 

  42. C.A.L. Burin, H. Cao, and M.A. Ratner, Two-photon pumping of a random laser, IEEE J. Selected Topics Quantum Electron., 9: 124–127 (2003).

    Article  Google Scholar 

  43. P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev., 109: 1492–1505 (1958).

    Article  ADS  Google Scholar 

  44. P.W. Anderson, The question of classical localization: A theory of white paint, Philos. Mag. B, 52: 505–509 (1985).

    Article  Google Scholar 

  45. S. John, Electromagnetic absorption in a disordered medium near a photon mobility edge, Phys. Rev. Lett., 53: 2169–2172 (1984).

    Article  ADS  Google Scholar 

  46. S. John, Localization of light, Phys. Today, 32–40 (May 1991).

    Google Scholar 

  47. B. Michel, MieCalc—freely configurable program for light scattering calculations (Mie theory) http://www.lightscattering.de/MieCalc/eindex.html.

    Google Scholar 

  48. X.H. Wu, A. Yamilov, H. Noh, and H. Cao, Random lasing in closely packed resonant scatterers, J. Opt. Soc. Am., 21: 159–167 (2004).

    Article  ADS  Google Scholar 

  49. A.L. Burin, M.A. Ratner, H. Cao, and R.P.H. Chang, Model for a random laser, Phys. Rev. Lett., 87: 215503 (2001).

    Article  ADS  Google Scholar 

  50. M. Bahoura, K.J. Morris, G. Zhu, and M.A. Noginov, Dependence of the neodymium random laser threshold on the diameter of the pumped spot, IEEE Journal of Quantum Electronics, 41: 677–685 (2005).

    Article  ADS  Google Scholar 

  51. M.A. Noginov, N. Noginova, S. Egarievwe, J.C. Wang, M.R. Kokta, and J. Paitz, Study of light propagation in scattering powder laser materials, Opt. Mater., 11: 1–7 (1998).

    Article  ADS  Google Scholar 

  52. N.È. Ter-Gabriélyan, V.M. Markushev, V.R. Belan, Ch.M. Briskina, O.V. Dimitrova, V.F. Zolin, and A.V. Lavrov, Stimulated radiation emitted by lithium neodymium tertaphosphate LiNd(PO3)4 and neodymium pentaphosphate NdP5O14 powders, Sov. J. Quantum Electron., 21: 840–841 (1991).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Theoretical Modeling of Neodymium Random Lasers. In: Solid-State Random Lasers. Springer Series in Optical Sciences, vol 105. Springer, New York, NY. https://doi.org/10.1007/0-387-25105-7_4

Download citation

Publish with us

Policies and ethics