Skip to main content

Applications of Random Lasers

  • Chapter
Solid-State Random Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 105))

  • 1142 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Letokhov, Stimulated emission of an ensemble of scattering particles with negative absorption [Pis’ma Zh. Eksp. i Teor. Fiz., 5: 262–265 (1967) Russian], JETP Lett., 5: 212–215 (1967).

    ADS  Google Scholar 

  2. R.M. Balachandran, D.P. Pacheco, and N.M. Lawandy, Laser action in polymeric gain media containing scattering particles, Appl. Opt., 35: 640–643 (1996).

    Article  ADS  Google Scholar 

  3. F. Auzel and P. Goldner, Coherent light sources with powder: Stimulated amplification versus super-radiance, J. Alloys Compounds, 300–301: 11–17 (2000).

    Article  Google Scholar 

  4. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometic crystals and powders, J. Opt. Soc. Am. B, 10: 2358–2363 (1993).

    Article  ADS  Google Scholar 

  5. G. Williams, S.C. Rand, T. Hinklin, and R.M. Laine, Blue and infrared laser action in strongly scattering Nd:alumina nanopowders. In Conference on Lasers and Electro-Optics, OSA Technical Digest, Optical Society of America: Washington, DC (1999), p. 483.

    Google Scholar 

  6. G. Williams, B. Bayram, S.C. Rand, T. Hinklin, and R.M. Laine, Laser action in strongly scattering rare-earth-doped dielecric nanophosphors, Phys. Rev. A., 65: 013807 (2001).

    Article  ADS  Google Scholar 

  7. V.S. Letokhov and S.K. Sekatskii, Cavityless powder lasers pumped by field-emission cathodes as a new class of monochromatic spatially incoherent radiation sources, Quantum Electron., 32(11): 1007–1008 (2002).

    Article  ADS  Google Scholar 

  8. D.S. Wiersma, The smallest random laser, Nature, 406: 132–133 (2000).

    Article  Google Scholar 

  9. N.M. Lawandy, ‘Paint-on lasers’ light the way for new technologies, Photon. Spectra, 119–127 (July 1994).

    Google Scholar 

  10. S. Larochelle, P. Mathieu, V. Larochelle, and J. Dubois, Long range interrogation of laser paints for identification applications. In Conference on Lasers and Electro-Optics, Vol. 11, 1997 OSA Technical Digest Series, Optical Society of America: Washington, DC (1997), p. 143.

    Google Scholar 

  11. I.T. Sorokina, E. Sorokin, V.G. Shcherbitsky, N.V. Kuleshov, G. Zhu, A. Frantz, and M.A. Noginov, Room-temperature lasing in nanocrystalline Cr2+:ZnSe random laser. In Technical Digest: Advanced Solid-State Photonics, Nineteenth Topical Meeting and Tabletop Exhibit. Paper # WB14, ISBN # 1-55752-764-4 (2004).

    Google Scholar 

  12. I.T. Sorokina, E. Sorokin, V. Shcherbitsky, N.V. Kuleshov, G. Zhu, A. Frantz, and M.A. Noginov, Fiber-coupled random laser. In International Quantum Electronics Conference, paper #IThG22, CD ROM 2004 CLEO/IQEC Technical Digest. ISBN # 1-55752-770-9 (2004).

    Google Scholar 

  13. R.M. Balachandran, A. Pacheco, and N.M. Lawandy, Photonic textile fibers. In Conference on Lasers and Electro-Optics, Vol. 15, 1995 OSA Technical Digest Series, Optical Society of America: Washington, DC (1995), pp. 114–115.

    Google Scholar 

  14. N. Schiff, Chemistry at CLEAN’99” http://search.netscape.com/ns/boomframe.jsp?query=%22Laser+paint%22&page=3&offset=0&result_url=redir%3Fsrc%3Dwebsearch%26requestId%3Dbfca7b7a65ff95a%26clickedItemRank%3D21%26userQuery%3D%2522Laser%2Bpaint%2522%26clickedItemURN%3Dhttp%253A%252F%252Fwww.schiff-consulting.com%252FCHEMISTRYATCLEAN%252799.HTM%-26invocationType%3Dnext%26fromPage%3DNSCPNextPrev%26amp%3BampTest-%3D1&remove_url=http%3A%2F%2F www.schiff-consulting.com%2FCHEMISTRYATCLEAN%252799.HTM.

    Google Scholar 

  15. H. Cao, J.Y. Xu, D.Z. Zhang, S.-H. Chan, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, Spatial confinement of laser light in active random media, Phys. Rev. Lett., 84: 5584–5587 (2000).

    Article  ADS  Google Scholar 

  16. H. Cao, J.Y. Xu, E.W. Seeling, and R.P. Chang, Microlaser made of disordered media, Appl. Phys. Lett., 76: 2997–2999 (2000).

    Article  ADS  Google Scholar 

  17. M. Siddique, L. Yang, Q.Z. Wang, and R.R. Alfano, Mirrorless action from optically pumped dye-treated animal tissues, Opt. Commun., 117: 475–479 (1995).

    Article  ADS  Google Scholar 

  18. R.C. Polson and Z.V. Vardeny, Random lasing in human tissues, Applied Physics Letters, 85: 1289–1291 (2004).

    Article  ADS  Google Scholar 

  19. G. Williams, S.C. Rand, T. Hinklin, and R.M. Laine, Ultraviolet laser action in strongly scattering Ce:alumina nanoparticles. In Conference on Lasers and Electro-Optics, OSA Technical Digest, Optical Society of America: Washington, DC (1999), p. 90.

    Google Scholar 

  20. V.F. Zolin, The nature of plaser-powdered laser, J. Alloys Compounds, 300–301: 214–217 (2000).

    Article  Google Scholar 

  21. A.A. Lichmanov, Ch.M. Briskina, N.P. Soshchin, and V.F. Zolin, Lasing in powders and its use for data processing, Bulletin of the Russian Academy of Sciences. Physics [Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya], 63: 922–926 (1999).

    Google Scholar 

  22. D.S. Wiersma and S. Cavalierit, Light emission: A temperature-tunable random laser, Nature, 414: 708–709, (2001).

    Article  ADS  Google Scholar 

  23. V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption [Zh. Eksp. i Teor. Fiz., 53: 1442–14452 (1967) Russian], Sov. Phys. JETP, 26: 835–840 (1968).

    ADS  Google Scholar 

  24. V.M. Markushev, V.F. Zolin, and Ch.M. Briskina, Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders, Sov. J. Quantum Electron., 16: 281–283 (1986).

    Article  ADS  Google Scholar 

  25. F. Varsanyi, Surface lasers, Appl. Phys. Lett., 19: 169–171 (1971).

    Article  ADS  Google Scholar 

  26. S.C. Rand, Strong localization of light and photonic atoms, Can. J. Phys., 78: 625–637 (2000).

    Article  ADS  Google Scholar 

  27. S.C. Rand, Bright storage of light, Opt. Photon. News, 32–37 (May 2004).

    Google Scholar 

  28. F. Auzel, Properties of highly populated excited states in solids: Superfluorescence, hot luminescence, excited state absorption. In Optical Properties of Excited States in Solids, B. DiBartolo, (ed.), C. Beckwith, (assist. ed.), Plenum: New York (published in cooperation with NATO Scientific Division) (1992), pp. 305–347.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Applications of Random Lasers. In: Solid-State Random Lasers. Springer Series in Optical Sciences, vol 105. Springer, New York, NY. https://doi.org/10.1007/0-387-25105-7_10

Download citation

Publish with us

Policies and ethics