Skip to main content

Abstract

Divide and conquer is a technique which is effective when preparing military campaigns, planning political strategy, and manipulating your parents. So, it is not too surprising that it also has an important role to play in algorithmic graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, P. Seymour, and R. Thomas, A separator theorem for graphs with an excluded minor and its applications, Proceedings of the 22nd Annual Association for Computing Machinery Symposium on Theory of Computing, ACM Press, New York (1990) 293–299

    Google Scholar 

  2. N. Alon, P. D. Seymour, and R. Thomas, Planar separators, SIAM Journal on Discrete Mathematics 7 (1994) 184–193

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Archdeacon and P. Huneke, A Kuratowski theorem for nonorientable surfaces, Journal of Combinatorial Theory, Series B 46 (1989) 173–231

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Arnborg, D. G. Corneil and A. Proskurowski, Complexity of finding em-beddings in a k-tree, SIAM Journal on Algebraic and Discrete Methods 8 (1987) 277–284

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory of graph reduction, Journal of the Association for Computing Machinery 40 (1993) 1134–1164

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, Journal of Algorithms 12 (1991) 308–340

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Applied Mathematics 23 (1989) (11–24)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Applegate, B. Bixby, V. Chvátal and W. Cook, On the solution of travelling salesman problems, Proceedings of the International Congress of Mathematicians Vol. III (Berlin, 1998) 645–656

    Google Scholar 

  9. M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, Network Models, North Holland, Amsterdam, The Netherlands, 1995

    Google Scholar 

  10. H. Bodlaender, M. Fellows, M. Hallett, T. Wareham and T. Warnow, The hardness of perfect phylogeny, feasible register assignment, and other problems on thin coloured graphs, Theoretical Computer Science 244 (2000) 167–188

    Article  MATH  MathSciNet  Google Scholar 

  11. H. L. Bodlaender, Dynamic programming on graphs of bounded treewidth, Proceedings of the 15th International Colloquium on Automata, Languages and Programming, T. Lepistö and A. Salomaa (eds.), Lecture Notes in Computer Science 317 (1998) 105–118, Springer Verlag, Berlin

    Google Scholar 

  12. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Journal of Algorithms 11 (1990) 631–643

    Article  MATH  MathSciNet  Google Scholar 

  13. H. L. Bodlaender, A linear time algorithm for finding tree decompositions of small treewidth, SIAM Journal of Computing 25 (1996) 1305–1317

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Bodlaender and T. Kloks, Efficient and Constructive algorithms for pathwidth and treewidth of graphs, Journal of Algorithms 21 (1996) 358–402

    Article  MATH  MathSciNet  Google Scholar 

  15. F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, Providence, Rhode Island, 1997

    Google Scholar 

  16. B. Courcelle, The monadic second order logic of graphs. I. Recognizable sets of finite graphs, Information and Computation 85 (1990) 12–75

    Article  MATH  MathSciNet  Google Scholar 

  17. M. R. Fellows and M. A. Langston, Nonconstructive advances in polynomial-time complexity, Information Processing Letters 26 (1987) 157–162

    Article  MATH  MathSciNet  Google Scholar 

  18. M. R. Fellows and M. A. Langston, Nonconstructive tools for proving polynomial-time decidability, Journal of the Association for Computing Machinery 35 (1988) 727–739

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Ford and D. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock Problem, Canad. J. Math. 9 (1957) 210–218

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Gavril, Algorithms on Clique Seperable Graphs, Discrete Mathematics 19 (1977), 159–165

    Article  MATH  MathSciNet  Google Scholar 

  22. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Toronto, Ontario, 1980

    MATH  Google Scholar 

  23. T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Don Mills, Ontario, 1969

    MATH  Google Scholar 

  24. R. M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45–68

    MATH  MathSciNet  Google Scholar 

  25. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM Journal on Applied Mathematics 36 (1979) 177–189

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Lynch, The equivalence of theorem proving and the interconnection problem, Association for Computing Machinery’s Special Interest Group on Design Automation Newsletter 5 (1976)

    Google Scholar 

  27. K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927) 96–115

    MATH  Google Scholar 

  28. B. Mohar and C. Thomassen, Graphs on Surfaces, John Hopkins Univeristy Press, Baltimore, 2001

    MATH  Google Scholar 

  29. B. Reed, Tree width and tangles, a new measure of connectivity and some applications, Surveys in Combinatorics, R. Bailey (ed.), LMS Lecture Note Series 241 (1997) 87–162, Cambridge University Press, Cambridge, UK

    Google Scholar 

  30. B. A. Reed, Finding approximate separators and computing tree width quickly, Proceedings of the 24th Annual Association for Computing Machinery Symposium on Theory of Computing, ACM Press, New York, 1992, 221–228

    Google Scholar 

  31. B. Reed, Disjoint connected paths: faster algorithms and shorter proofs, manuscript.

    Google Scholar 

  32. N. Robertson and P. D. Seymour, Graph Minors. II. Algorithmic aspects of tree-width, Journal of Algorithms 7 (1986) 309–322

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Robertson and P. D. Seymour, Graph Minors. IV. Tree-width and well-quasi-ordering, Journal of Combinatorial Theory, Series B 48 (1990) 227–254

    Article  MATH  MathSciNet  Google Scholar 

  34. N. Robertson and P. D. Seymour, Graph Minors. V. Excluding a planar graph, Journal of Combinatorial Theory, Series B 41 (1986) 92–114

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Robertson and P. D. Seymour, Graph Minors. VII. Disjoint paths on a surface, Journal of Combinatorial Theory, Series B 45 (1988) 212–254

    Article  MATH  MathSciNet  Google Scholar 

  36. N. Robertson and P. D. Seymour, Graph Minors. VIII. A Kuratowski theorem for general surfaces, Journal of Combinatorial Theory, Series B 48 (1990) 255–288

    Article  MATH  MathSciNet  Google Scholar 

  37. N. Robertson and P. D. Seymour, Graph Minors. X. Obstructions to tree-decomposition, Journal of Combinatorial Theory, Series B 52 (1991) 153–190

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Robertson and P. D. Seymour, Graph Minors. XIII. The disjoint paths problem, Journal of Combinatorial Theory, Series B 63 (1995) 65–110

    Article  MATH  MathSciNet  Google Scholar 

  39. N. Robertson and P. D. Seymour, Graph Minors. XVI. Excluding a non-planar graph, manuscript.

    Google Scholar 

  40. N. Robertson and P. D. Seymour, Graph Minors. XX. Wagner’s Conjecture, manuscript, 1988.

    Google Scholar 

  41. N. Robertson, P. D. Seymour and R. Thomas, A survey of linkless embeddings, Graph Structure Theory(Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, Seattle, 1991), N. Robertson and P. Seymour (eds.), Contemporary Mathematics 147 (1993) 125–136, American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  42. N. Robertson, P. Seymour and R. Thomas, Quickly excluding a planar graph, Journal of Combinatorial Theory, Series B 62 (1994) 323–348

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Seymour, A bound on the excluded minors for a surface, manuscript.

    Google Scholar 

  44. P. D. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-width, Journal of Combinatorial Theory, Series B 58 (1993) 22–33

    Article  MATH  MathSciNet  Google Scholar 

  45. R. Thomas, A Menger-like property of tree-width: the finite case, Journal of Combinatorial Theory, Series B 48 (1990) 67–76

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Thorup, All structured programs have small tree-width and good register allocation, Information and Computation 142 (1998) 159–181

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Whitesides, An Algorithm for Finding Clique Cutsets, Information Processing Letters 12 (1981) 31–32

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Reed, B.A. (2003). Algorithmic Aspects of Tree Width. In: Reed, B.A., Sales, C.L. (eds) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer, New York, NY. https://doi.org/10.1007/0-387-22444-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-22444-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9268-2

  • Online ISBN: 978-0-387-22444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics