Skip to main content

The Cellular Structure of Halophilic Microorganisms

  • Chapter
Halophilic Microorganisms and their Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

  • 632 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.4. References

  • Adams, R.L., and Russell, N.J. 1992. Interactive effects of salt concentration and temperature on growth and lipid composition in the moderately halophilic bacterium Vibrio costicola. Can. J. Microbiol. 38: 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Adams, R., Bygraves, J., Kogut, M., and Russell, N.J. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133: 1861–1870.

    PubMed  CAS  Google Scholar 

  • Adams, R.L., Kogut, M., and Russell, N.J. 1990. The effect of salinity on growth and lipid composition of a moderately halophilic Gram-negative bacterium HX. Biochem. Cell Biol. 68: 249–254.

    Article  CAS  Google Scholar 

  • Alam, M., and Oesterhelt, D. 1984. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176: 459–475.

    Article  PubMed  CAS  Google Scholar 

  • Alam, M., and Oesterhelt, D. 1987. Purification, reconstitution and polymorphic transition of halophilic flagella. J. Mol. Biol. 194: 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Alam, M., Claviez, M., Oesterhelt, D., and Kessel, M. 1984. Flagella and motility behaviour of square bacteria. EMBO J. 3: 2899–2903.

    PubMed  CAS  Google Scholar 

  • Alba, I., Torreblanca, M., Sánchez, M., Colom, M.F., and Meseguer, I. 2001. Isolation of the fibrocrystalline body, a structure present in haloarchaeal species, from Halobacterium salinarum. Extremophiles 5: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Antón, J., Meseguer, I., and Rodríguez-Valera, F. 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54: 2381–2386.

    PubMed  Google Scholar 

  • Arahal, D.R., Márquez, M.C., Volcani, B.E., Schleifer, K.H., and Ventosa, A. 1999. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int. J. Syst. Bacteriol. 49: 521–530.

    Article  PubMed  Google Scholar 

  • Ban, N., Nissen, P., Hansen, J., Moore, P., and Steitz, T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–934.

    Article  PubMed  CAS  Google Scholar 

  • Beard, S.J., Hayes, P.K., and Walsby, A.E. 1997. Growth competition between Halobacterium salinarium strain PHH1 and mutants affected in gas vesicle synthesis. Microbiology UK 143: 467–473.

    Article  CAS  Google Scholar 

  • Blaurock, A.E., Stoeckenius, W., Oesterhelt, D., and Scherphof, G.L. 1976. Structure of the cell envelope of Halobacterium halobium. J. Cell Biol. 71: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Bochem, H.-P., and Sprey, B. 1979. Laser microprobe analysis of inclusions in Dunaliella salina. Z. Pflanzenphysiol. 95: 179–182.

    CAS  Google Scholar 

  • Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I., and Béjar, V. 2001. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 51: 1625–1632.

    PubMed  CAS  Google Scholar 

  • Brown, A.D. 1990. Microbial water stress physiology. Principles and perspectives. John Wiley & Sons, Chichester

    Google Scholar 

  • Brown, H.J., and Gibbons, N.E. 1955. The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria. Can. J. Microbiol. 1: 486–494.

    Article  PubMed  CAS  Google Scholar 

  • Chaiyanan, S., Chaiyanan, S., Maugel, T., Huq, A., Robb, F.T., and Colwell, R.R. 1999. Polyphasic taxonomy of a novel Halobacillus, Halobacillus thailandensis sp. nov. isolated from fish sauce. Syst. Appl. Microbiol. 22: 360–365.

    PubMed  CAS  Google Scholar 

  • Cho, K.Y., Doy, C.J., and Mercer, E.H. 1967. Ultrastructure of the obligate halophilic bacterium Halobacterium halobium. J. Bacteriol. 94: 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S., Oren, A., and Shilo, M. 1983. The divalent cation requirement of Dead Sea halobacteria. Arch. Microbiol. 136: 184–190.

    Article  CAS  Google Scholar 

  • Cohen, S., Shilo, M., and Kessel, M. 1991. Nature of the salt dependence of the envelope of a Dead Sea archaebacterium, Haloferax volcanii. Arch. Microbiol. 156: 198–203.

    Article  CAS  Google Scholar 

  • Collella, M., Lobasso, S., Babudri, F., and Corcelli, A. 1998. Palmitic acid is associated with halorhodopsin as a free fatty acid. Radiolabeling of halorhodopsin with 3H-palmitic acid and chemical analysis of the reaction products of purified halorhodopsin with thiols and NaBH4 Biochim. Biophys. Acta 1370: 273–279.

    Article  Google Scholar 

  • Collins, M.D., and Tindall, B.J. 1987. Occurrence of menaquinones and some novel methylated menaquinones in the alkaliphilic, extremely halophilic archaebacterium Natronobacterium gregoryi. FEMS Microbiol. Lett. 43: 307–312.

    Article  CAS  Google Scholar 

  • Collins, M.D., Ross, H.N.M., Tindall, B.J., and Grant, W.D. 1981. Distribution of isoprenoid quinones in halophilic bacteria. J. Appl. Bacteriol. 50: 559–565.

    CAS  Google Scholar 

  • Conway de Macario, E., Konig, H., and Macario, A.J.L. 1986. Immunological distinctiveness of archaebacteria that grow in high salt. J. Bacteriol. 168: 425–427.

    PubMed  CAS  Google Scholar 

  • Corcelli, A., Lobasso, S., Colella, M., Trotta, M., Guerrieri, A., and Palmisano, F. 1996. Role of palmitic acid on the isolation and properties of halorhodopsin. Biochim. Biophys. Acta 1281: 173–181.

    Article  PubMed  Google Scholar 

  • Corcelli, A., Colella, M., Mascolo, G., Fanizzi, F.P., and Kates, M. 2000. A novel glycolipid and phospholipid in the purple membrane. Biochemistry 39: 3318–3326.

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust, J.-Y., and Kusher, D.J. 1972. The regular hexagonal surface layer of Halobacterium cutirubrum: a honeycomb network. Can. J. Microbiol. 18: 1767–1768.

    Article  PubMed  Google Scholar 

  • DasSarma, S. 1993. Identification and analysis of the gas vesicle cluster on an unstable plasmid of Halobacterium halobium. Experientia 49: 482–486.

    Article  PubMed  CAS  Google Scholar 

  • DasSarma, S., and Arora, P. 1997. Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiol. Lett. 153: 1–10.

    Article  CAS  Google Scholar 

  • DasSarma, S., Damerval, T., Jones, J.G., and Tandeau de Marsac, N. 1987. A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol. Microbiol. 1: 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Dees, C., and Oliver, J.D. 1977. Growth inhibition of Halobacterium cutirubrum by cerulenin, a potent inhibitor of fatty acid synthesis. Biochem. Biophys. Res. Commun. 78: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H.N.M., Grant, W.D., and Bu’lock, J.D. 1982. An asymmetric archaebacterial diether lipid from alkaliphilic halophiles. J. Gen. Microbiol. 128: 343–348.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B., and Grant, W.D. 1983. A C25,25 diether core lipid from archaebacterial haloalkaliphiles. J. Gen. Microbiol. 129: 2333–2337.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Grant, W.D., Lanzotti, V., and Nicolaus, B. 1988. Polar lipids and glycine betaine from haloalkaliphilic archaebacteria. J. Gen. Microbiol. 134: 205–211.

    Google Scholar 

  • Drews, G. 1981. Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch. Microbiol. 130: 325–327.

    Article  CAS  Google Scholar 

  • Dussault, H.P. 1956a. Study of red halophilic bacteria in solar salt and salted fish: II. Bacto-oxgall as a selective agent for differentiation. J. Fish. Res. Bd. Canada 13: 195–199.

    Google Scholar 

  • Dussault, H.P. 1956b. Study of red halophilic bacteria in solar salt and salted fish: I. Effect of Bacto-oxgall. J. Fish. Res. Bd. Canada 13: 183–194.

    Google Scholar 

  • Dyall-Smith, M.L. 2001. The halohandbook: protocols for halobacterial genetics. Version 4.5. http://www.microbiol.unimelb.edu.au/micro/staff/mds/HaloHandbook/index.html (last accessed: December 23, 2001; last updated: December 2001).

  • Eichler, J. 2000. Novel glycoproteins of the halophilic archaeon Haloferax volcanii. Arch. Microbiol. 173: 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, J. 2001. Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur. J. Biochem. 268: 4366–4373.

    Article  PubMed  CAS  Google Scholar 

  • Englert, C., Horne, M., and Pfeifer, F. 1990. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 222: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Englert, C., Wanner, G., and Pfeifer, F. 1992. Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product. Mol. Microbiol. 6: 3543–3550.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R.W., Kushwaha, S.C., and Kates, M. 1980. The lipids of Halobacterium marismortui, an extremely halophilic bacterium in the Dead Sea. Biochim. Biophys. Acta 619: 533–544.

    PubMed  CAS  Google Scholar 

  • Fendrich, C., Hippe, H., and Gottschalk, G. 1990. Clostridium halophilum sp. nov., and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154: 127–132.

    Article  CAS  Google Scholar 

  • Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzalez-Ramos, J., and Ruiz-Berraquero, F. 1986. Accumulation ofpoly (β-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol. 51: 214–216.

    PubMed  CAS  Google Scholar 

  • Franceschi, F., Sagi, I., Böddeker, N., Evers, U., Arndt, E., Paulke, C., Hasenbank, R., Laschever, M., Glotz, C., Piefke, J., Müssig, J., Weinstein, S., and Yonath, A. 1994. Crystallographic, biochemical and genetic studies on halophilic ribosomes. Syst. Appl. Microbiol. 16: 697–705.

    CAS  Google Scholar 

  • Franzmann, P.D., and Tindall, B.J. 1990. A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol. 13: 142–147.

    CAS  Google Scholar 

  • Franzmann, P.D., Stackebrandt, E., Sanderson, K., Volkman, J.K., Cameron, D.E., Stevenson, P.L., McMeekin, T.A., and Burton, H.R. 1988. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11: 20–27.

    CAS  Google Scholar 

  • Fredrickson, H.L., de Leeuw, J.W., Tas, AC., van der Greef, J., LaVos, G.F., and Boon, J.J. 1989a. Fast atom bombardment (tandem) mass spectrometric analysis of intact polar ether lipids extractable from the extremely halophilic archaebacterium Halobacterium cutirubrum. Biomed. Environ. Mass Spectrom. 18: 96–105.

    Article  CAS  Google Scholar 

  • Fredrickson, H.L., Rijpstra, W.I.C., Tas, AC., van der Greef, J., LaVos, G.F., and de Leeuw, J.W. 1989b. Chemical characterizations of benthic microbial assemblages, pp. 455–468 In: Cohen, Y., and Rosenberg, E. (Eds.), Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Fujii, T. 1980. Some characteristics of spore-forming halophilic bacteria isolated from “bagoong”. Bull. Jap. Soc. Sci. Fish. 46: 1545.

    Google Scholar 

  • Garabito., M.J., Arahal, D.R., Mellado, E., Márquez, M.C., and Ventosa, A. 1997. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int. J. Syst. Bacteriol. 47: 735–741.

    Article  PubMed  CAS  Google Scholar 

  • Gilboa-Garber, N., Mymon, H., and Oren, A. 1998. Typing of halophilic Archaea and characterization of their cell surface carbohydrate by use of lectins. FEMS Microbiol. Lett. 163: 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, M., Ginzburg, B.Z., and Wayne, R. 1999. Ultrarapid endocytotic uptake of large molecules in Dunaliella species. Protoplasma 206: 73–86.

    Article  CAS  Google Scholar 

  • Golecki, J.R., and Drews, G. 1980. Cellular organization of the halophilic bacterium strain WS 68. Eur. J. Cell Biol. 22: 654–660.

    PubMed  CAS  Google Scholar 

  • Halladay, J.T., Ng, W, and DasSarma, S. 1992. Genetic transformation of a halophilic archaebacterium with a gas vesicle gene cluster restores its ability to float. Gene 119: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Halladay, J.T., Jones, J.G., Lin, F., MacDonald, A.B., and DasSarma, S. 1993. The rightward gas vesicle operon in Halobacterium plasmid pNRC100: identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J. Bacteriol. 175: 684–692.

    PubMed  CAS  Google Scholar 

  • Hamamoto, T., Takashina, T., Grant, W.D., and Horikoshi, K. 1988. Asymmetric cell division of a triangular halophilic archaebacterium. FEMS Microbiol. Lett. 56: 221–224.

    Article  Google Scholar 

  • Hancock, A.J., and Kates, M. 1973. Structure determination of the phosphatidylglycerosulfate (diether analog) from Halobacterium cutirubrum. J. Lipid Res. 14: 422–429.

    PubMed  CAS  Google Scholar 

  • Hanna, K., Bengis-Garber, C., Kushner, D.J., Kogut, M., and Kates, M. 1984. The effect of salt concentration on the phospholipid and fatty acid composition of the moderate halophile Vibrio costicola. Can. J. Microbiol. 30: 669–675.

    Article  CAS  Google Scholar 

  • Hara, H., and Masui, M. 1985. Effect of NaCl concentration on the synthesis of membrane phospholipid in a halophilic bacterium. FEMS Microbiol. Ecol. 31: 279–282.

    Article  CAS  Google Scholar 

  • Hara, H., Hyono, A., Kuriyama, S., Yano, I., and Masui, M. 1980. ESR studies on the membrane properties of a moderately halophilic bacterium. II. Effect of extreme growth conditions on liposome properties. J. Biochem. 88: 1275–1282.

    PubMed  CAS  Google Scholar 

  • Hart, D.J., and Vreeland, R.H. 1988. Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J. Bacteriol. 170: 132–135.

    PubMed  CAS  Google Scholar 

  • Hecht, K., Wieland, F., and Jaenicke, R. 1986. The cell surface glycoprotein of Halobacterium halobium. Biol. Chem. Hoppe-Seyler 367: 33–38.

    PubMed  CAS  Google Scholar 

  • Hezayen, F.F., Rehm, B.H.A., Eberhardt, R., and Steinbüchel, A. 2000 Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotechnol. 54: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Hezayen, F.F., Rehm, B.H.A., Tindall, B.J., and Steinbüchel, A. 2001. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int. J. Syst. Evol. Microbiol. 51: 1133–1142.

    PubMed  CAS  Google Scholar 

  • Hiramatsu, T., Ohno, Y., Hara, H., Toriyama, S., Yano, I., and Masui, M. 1978. Salt-dependent change of cell envelope components of a moderately halophilic bacterium, Psendomonas halosaccharolytica, pp. 515–520 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hiramatsu, T., Ohno, Y., Hara, H., Yano, I., and Masui, M. 1980a. Effects of NaCl concentration on the envelope components in a moderately halophilic bacterium, Pseudomonas halosaccharolytica, pp. 189–200 In: Morishita, H., and Masui, M. (Eds.), Saline environments. Proceedings of the Japanese Conference on Halophilic Microbiology. Nakanishi Printing Co., Kyoto.

    Google Scholar 

  • Hiramatsu, T., Yano, I., and Masui, M. 1980b. Effect of NaCl concentration on the protein species and phospholipid composition of the outer membrane in a moderately halophilic bacterium. FEMS Microbiol. Lett. 7: 289–292.

    Article  CAS  Google Scholar 

  • Hirsch, P., and Hoffmann, B. 1989. Dichotomicrobium thermohalophilum, gen. nov., spec, nov., budding prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Syst. Appl. Microbiol. 11: 291–301.

    Google Scholar 

  • Horikoshi, K., Aono, R., and Nakamura, S. 1993. The triangular halophilic archaebacterium Haloarcula japonica strain TR-1. Experientia 49: 497–502.

    Article  Google Scholar 

  • Horne, M., and Pfeifer, F. 1989. Expression of two gas vacuole protein genes in Halobacterium halobium and other related species. Mol. Gen. Genet. 218: 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Houwink, A.L. 1956. Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium: an electron microscope study. J. Gen. Microbiol. 15: 146–150.

    PubMed  CAS  Google Scholar 

  • Hyono, A., Kuriyama, S., Hara, H., Yano, I., and Masui, M. 1979. Thick viscous structures in the lipid membranes of a moderately halophilic Gram-negative bacterium. FEBS Lett. 103: 192–196.

    Article  PubMed  CAS  Google Scholar 

  • Hyono, A., Kuriyama, S., Hara, H., Yano, I., and Masui, M. 1980. ESR studies on the membrane properties of a moderately halophilic bacterium. I. Physical properties of lipid bilayers in whole cells. J. Biochem. 88: 1267–1274.

    PubMed  CAS  Google Scholar 

  • Imhoff, J.F., and Thiemann, B. 1991. Influence of salt concentration and temperature on the fatty acid compositions of Ectothiorhodospira ad other halophilic phototrophic purple bacteria. Arch. Microbiol. 156: 370–375.

    Article  CAS  Google Scholar 

  • Imhoff, J.F., and Trüper, H.G. 1981. Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 228–234.

    Google Scholar 

  • Imhoff, J.F., Tindall, B.J., Grant, W.D., and Trüper, H.G. 1991. Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch. Microbiol. 130: 238–242.

    Article  Google Scholar 

  • Jashke, M., Butt, H.-J., and Wolff, E.K. 1994. Imaging flagella of halobacteria by atomic force microscopy. Analyst 119: 1943–1946.

    Article  Google Scholar 

  • Johnson, K.G., Lanthier, P.H., and Gochnauer, M.B. 1986 Cell walls from Actinopolyspora halophila, an extremely halophilic actinomycete. Arch. Microbiol. 143: 365–369.

    Article  CAS  Google Scholar 

  • Kamekura, M. 1993. Lipids of extreme halophiles, pp. 135–161 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Kamekura, M. 1998. Diversity of extremely halophilic bacteria. Extremophiles 2: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura. M. 1999. Diversity of members of the family Halobacteriaceae, pp. 13–25 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Kamekura, M., and Dyall-Smith, M.L. 1995. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J. Gen. Appl. Microbiol. 41: 333–350.

    Article  CAS  Google Scholar 

  • Kamekura, M., and Kates, M. 1988. Lipids of halophilic archaebacteria, pp. 25–54 In: Rodriguez-Valera, F., (Ed.), Halophilic bacteria. Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Kamekura, M., and Kates, M. 1999. Structural diversity of membrane lipids in members of Halobacteriaceae. Biosci. Biotechnol. Biochem. 63: 969–972.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., and Seno, Y. 1991. Lysis of halobacteria with bile acids and proteolytic enzymes of halophilic archaeobacteria, pp. 359–365 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Kamekura, M., Oesterhelt, D., Wallace, R., Anderson, P., and Kushner, D.J. 1988. Lysis of halobacteria in Bacto-peptone by bile acids. Appl. Environ. Microbiol. 54: 990–995.

    PubMed  CAS  Google Scholar 

  • Kandler, O., and König, K. 1993. Cell envelopes of archaea: structure and chemistry, pp. 223–259 In: Kates, M., Kushner, D.J., and Matheson, A.T. (Eds.), The biochemistry of Archaea. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Kates, M. 1978. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog. Chem. Fats Lipids 15: 301–342.

    Article  CAS  Google Scholar 

  • Kates, M. 1993. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia 49: 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  • Kates, M. 1996. Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J. Microbiol. Meth. 25: 113–128.

    Article  CAS  Google Scholar 

  • Kates, M., and Deroo, P.W. 1973. Structure determination of the glycolipid sulphate from the extreme halophile Halobacterium cutirubrum. J. Lipid Res. 14: 438–445.

    PubMed  CAS  Google Scholar 

  • Kates, M., and Kushwaha, S.C. 1995. Isoprenoids and polar lipids of extreme halophiles, pp. 35–54 In: DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Kates, M., and Moldoveanu, N. 1991. Polar lipid structure, composition and biosynthesis in extremely halophilic bacteria, pp. 191–198 In Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Kates, M., Porter, S., and Kushner, D.J. 1987. Actinopolyspora halophila does not contain mycolic acids. Can. J. Microbiol. 33: 822–823.

    Article  CAS  Google Scholar 

  • Kates, M., Moldoveanu, N., and Stewart, L.C. 1993. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1169: 46–53.

    PubMed  CAS  Google Scholar 

  • Kessel, M. 1983. Double periodic component in the cell wall of a square-shaped halobacterium, p. 746 in: Bailey, G.W. (Ed.), Proceedings of the 4th annual meeting of the electron microscopy society of America. San Francisco Press, San Francisco.

    Google Scholar 

  • Kessel, M., and Cohen, Y. 1982. Ultrastructure of square bacteria from a brine pool in southern Sinai. J. Bacteriol. 150: 851–860.

    PubMed  CAS  Google Scholar 

  • Kessel, M., Cohen, Y., and Walsby, A.E. 1985a. Structure and physiology of square-shaped and other halophilic bacteria from the Gavish Sabkha, pp. 267–287 In: Friedman, G.M., and Krumbein, W.E. (Eds.), Hypersaline ecosystems. The Gavish sabkha. Springer-Verlag, Berlin.

    Google Scholar 

  • Kessel, M., Radermacher, M., and Frank, J. 1985b. The structure of the stalk surface layer of a brine pond microorganism: correlation averaging applied to a double layered lattice structure. J. Microsc. 139: 63–74.

    PubMed  CAS  Google Scholar 

  • Kessel, M., Buhle, E.L., Jr., Cohen, S., and Aebi, U. 1988a. The cell wall structure of a magnesium-dependent halobacterium, Halobacterium volcanii CD-2, from the Dead Sea. J. Ultrastruct. Mol. Struct. Res. 100: 94–106.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., Wildhaber, I., Cohen, S., and Baumeister, W. 1988b. Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea. EMBO J. 7: 1549–1554.

    PubMed  CAS  Google Scholar 

  • Kikuchi, A., Sagami, H., and Ogura, K. 1999. Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J. Biol. Chem. 274: 18011–18016.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, R.G., and Ginzburg, M. 1972. Ultrastructure of two species of Halobacterium. J. Ultrastr. Res. 41: 80–94.

    Article  CAS  Google Scholar 

  • Klöppel, K.-D., and Fredrickson, H.L. 1991. Fast atom bombardment mass spectrometry as a rapid means of screening mixtures of ether-linked polar lipids from extremely halophilic archaebacteria for the presence of novel chemical structures. J. Chromatogr. 562: 369–376.

    Article  PubMed  Google Scholar 

  • Kogut, M., and Russell, N.J. 1984. The growth and phospholipid composition of a moderately halophilic bacterium during adaptation to changes in salinity. Curr. Microbiol. 10: 95–98.

    Article  CAS  Google Scholar 

  • Kogut, M., Mason, J.R., and Russell, N.J. 1992. Isolation of salt-sensitive mutants of the moderately halophilic eubacterium Vibrio costicola. Curr. Microbiol. 24: 325–328.

    Article  Google Scholar 

  • Kostrikina, N.A., Zvyagintseva, I.S., and Duda, V.I. 1991. Cytological peculiarities of some extremely halophilic soil archaeobacteria. Arch. Microbiol. 156: 344–349.

    Article  Google Scholar 

  • Kranz, M.J., and Ballou, C.E. 1973. Analysis of Halobacterium halobium gas vesicles. J. Bacteriol. 114: 1058–1067.

    Google Scholar 

  • Kuchta, T., and Russell, N.J. 1994. Glycinebetaine stimulates, but NaCl inhibits, fatty acid biosynthesis in the moderately halophilic eubacterium HX. Arch. Microbiol. 161: 234–238.

    Article  CAS  Google Scholar 

  • Kupper, J., Marwan, W., Typke, D., Grünberg, H., Uwer, U., Gluch, M., and Oesterhelt, D. 1994. The flagellar bundle of Halobacterium salinarum is inserted into a distinct polar cap structure. J. Bacteriol. 176: 5184–5187.

    PubMed  CAS  Google Scholar 

  • Kuriyama, S., Hara, H., Hiramatsu, T., Hyono, A., Yano, I., and Masui, M. 1982. ESR studies on the lipid bilayers of separated outer and cytoplasmic membranes of a moderately halophilic bacterium. Can. J. Microbiol. 60: 830–837.

    CAS  Google Scholar 

  • Kushner, D.J. 1964. Lysis and dissolution of cells and envelopes of an extremely halophilic bacterium. J. Bacteriol. 87: 1147–1156.

    PubMed  CAS  Google Scholar 

  • Kushner, D.J., and Bayley, S.T. 1963. The effect of pH on surface structure and morphology of the extreme halophile Halobacterium cutirubrum. Can. J. Microbiol. 9: 53–63.

    Article  CAS  Google Scholar 

  • Kushner, D.J., and Onishi, H. 1968. Absence of normal cell wall constituents from the outer layers of Halobacterium cutirubrum. Can. J. Biochem. 46: 997–998.

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., and Kates, M. 1978. 2,3-Di-O-phytanyl-sn-glycerol and prenols from extremely halophilic bacteria. Phytochemistry 17: 2029–2030.

    Article  CAS  Google Scholar 

  • Kushwaha, S.C., Pugh, E.L., Kramer, J.K.G., and Kates, M. 1972. Isolation and identification of dehydrosqualene and C40 carotenoid pigments in Halobacterium cutirubrum. Biochim. Biophys. Acta 260: 492–506.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Kates, M., and Kramer, J.K.G. 1977. Occurrence of indole in cells of extremely halophilic bacteria. Can. J. Microbiol. 23: 826–828.

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Juez-Pérez, G., Rodriguez-Valera, F., Kates, M., and Kushner, D.J. 1982a. Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Can. J. Microbiol. 28: 1365–1372.

    Article  CAS  Google Scholar 

  • Kushwaha, S.C., Kates, M., Juez, G., Rodriguez-Valera, F., and Kushner, D.J. 1982b. Polar lipids of an extremely halophilic bacterial strain (R-4) isolated from salt ponds in Spain. Biochim. Biophys. Acta 711: 19–25.

    CAS  Google Scholar 

  • Lanzotti, V., Nicolaus, B., Trincone, A., and Grant, W.D. 1988. The glycolipid of Halobacterium saccharovorum. FEMS Microbiol. Lett. 55: 223–228.

    Article  CAS  Google Scholar 

  • Lanzotti, V., Nicolaus, B., Trincone, A., De Rosa, M., Grant, W.D., and Gambacorta, A. 1989. A complex lipid with a cyclic phosphate from the archaebacterium Natronococcus occultus. Biochim. Biophys. Acta 1001: 31–34.

    CAS  Google Scholar 

  • Larsen, H., Omang, S., and Steensland, H. 1967. On the gas vacuoles of the halobacteria. Arch. f. Mikrobiol. 59: 197–203.

    Article  CAS  Google Scholar 

  • Lechner, J., and Sumper, M. 1987. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J. Biol. Chem. 262: 9724–9729.

    PubMed  CAS  Google Scholar 

  • Lechner, J., and Wieland, F. 1989. Structure and biosynthesis of prokaryotic glycoproteins. Ann. Rev. Biochem. 58: 173–194.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, J., Wieland, F., and Sumper, M. 1985a. Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. J. Biol. Chem. 260: 860–866

    PubMed  CAS  Google Scholar 

  • Lechner, J., Wieland, F., and Sumper, M. 1985b. Transient methylation of dolichyl oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J. Biol. Chem. 260: 8984–8989.

    PubMed  CAS  Google Scholar 

  • Lillo, J.G., and Rodriguez-Valera, F. 1990. Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol. 56: 2517–2521.

    PubMed  Google Scholar 

  • Mack, E.E., Mandelco, L., Woese, C.R., and Madigan, M.T. 1993. Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodosirillum species. Arch. Microbiol. 160: 363–371.

    Article  CAS  Google Scholar 

  • Maeda, M., and Thompson, G.A., Jr. 1986. On the mechanism of rapid plasma membrane and chloroplast envelope expansion in Dunaliella salina exposed to hypoosmotic shock. J. Cell Biol. 102: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Margolin, W., Wang, R., and Kumar, M. 1996. Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J. Bacteriol. 178: 1320–1327.

    PubMed  CAS  Google Scholar 

  • Marwan, W., Alam, M., and Oesterhelt, D. 1987. Die Geßelbewegung halophiler Bakterien. Naturwissenschaften 74: 585–590.

    Article  CAS  Google Scholar 

  • Marwan, W., Alam, M., and Oesterhelt, D. 1991. Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J. Bacteriol. 173: 1971–1977.

    PubMed  CAS  Google Scholar 

  • Matsubara, T., Iida-Tanaka, N., Kamekura, M., Moldoveanu, N., Ishizuka, I., Onishi, H., Hayashi, A, and Kates, M. 1994. Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid. Biochim. Biophys. Acta 1214: 97–108.

    PubMed  CAS  Google Scholar 

  • McGenity, T.J., Gemmell, R.T., and Grant, W.D. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48: 1187–1196.

    Article  Google Scholar 

  • Méjanelle, L., Lòpez, J.F., Gunde-Cimerman, N., and Grimalt, J.O. 2000. Sterols of melanized fungi from hypersaline environments. Org. Geochem. 31: 1031–1040.

    Article  Google Scholar 

  • Méjanelle, L., Lòpez, J.F., Gunde-Cimerman, N., and Grimalt, J.O. 2001. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J. Lipid Res. 42: 352–358.

    PubMed  Google Scholar 

  • Mengele, R., and Sumper, M. 1992. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J. Biol. Chem. 267: 8182–8185.

    PubMed  CAS  Google Scholar 

  • Mescher, M.F. 1981. Glycoproteins as cell-surface structural components. Trends Biochem. Sci. 6: 97–99.

    Article  CAS  Google Scholar 

  • Mescher, M.F., and Strominger, J.L. 1976a. Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J. Biol. Chem. 251: 2005–2014.

    PubMed  CAS  Google Scholar 

  • Mescher, M.F., and Strominger, J.L. 1976b. Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc. Natl. Acad. Sci. USA 73: 2687–2691.

    Article  PubMed  CAS  Google Scholar 

  • Mescher, M.F., Strominger, J.L., and Watson, S.W. 1974. Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium. J. Bacteriol. 120: 945–954.

    PubMed  CAS  Google Scholar 

  • Mescher, M.F., Hansen, U., and Strominger, J.L. 1976. Formation of lipid-linked sugar compounds in Halobacterium salinarium. J. Biol. Chem. 251: 7289–7294.

    PubMed  CAS  Google Scholar 

  • Miller, K.J. 1985. Effects of temperature and sodium chloride concentrations on the phospholipid and fatty acid composition of a halotolerant Planococcus sp. J. Bacteriol. 162: 263–270.

    PubMed  CAS  Google Scholar 

  • Miller, K.J. 1986. Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp. Appl. Environ. Microbiol. 52: 580–582.

    PubMed  CAS  Google Scholar 

  • Mohr, V., and Larsen, H. 1963a. On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J. Gen. Microbiol. 31: 267–280.

    CAS  Google Scholar 

  • Mohr, V., and Larsen, H. 1963b. The mechanism of lysis of Halobacterium salinarium in hypotonic solutions. Acta Chem. Scand. 17: 888.

    Google Scholar 

  • Moldoveanu, N., and Kates, M. 1988. Biosynthetic studies of the polar lipids of Halobacterium cutirubrum. Formation of isoprenyl ether intermediates. Biochim. Biophys. Acta 960: 164–182.

    CAS  Google Scholar 

  • Moldoveanu, M., Kates, M., Montero, C.G., and Ventosa, A. 1990. Polar lipids of non-alkaliphilic Halococci. Biochim. Biophys. Acta 1046: 127–135.

    PubMed  CAS  Google Scholar 

  • Montalvo-Rodríguez, R., Vreeland, R.H., Oren, A., Kessel, M., Betancourt, C., and López-Garriga, J. 1998. Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic Archaeon from Puerto Rico. Int. J. Syst. Bacteriol. 48: 1305–1312.

    Article  Google Scholar 

  • Monteoliva-Sanchez, M., and Ramos-Cormenzana, A. 1986. Effect of growth temperature and salt concentration on the fatty acid composition of Flavobacterium halmephilum CCM2831. FEMS Microbiol. Lett. 33: 51–54.

    Article  CAS  Google Scholar 

  • Monteoliva-Sanchez, M., and Ramos-Cormenzana, A. 1987a. Cellular fatty acid composition in moderately halophilic Gram-negative rods. J. Appl. Bacteriol. 62: 361–366.

    CAS  Google Scholar 

  • Monteoliva-Sanchez, M., and Ramos-Cormenzana, A. 1987b. Cellular fatty acid composition of Planococcus halophilus NRCC 14033 as affected by growth temperature and salt concentration. Curr. Microbiol. 15: 133–136.

    Article  CAS  Google Scholar 

  • Monteoliva-Sanchez, M., Ferrer, M.R., Ramos-Cormenzana, A., Quesada, E., and Monteoliva, M. 1988. Cellular fatty acid composition of Deleya halophila: effect of growth temperature and salt concentration. J. Gen. Microbiol. 134: 199–203.

    CAS  Google Scholar 

  • Monteoliva-Sanchez, M., Ventosa, A., and Ramos-Connenzana, A. 1989. Cellular fatty acid composition of moderately halophilic cocci. Syst. Appl. Microbiol. 12: 141–144.

    CAS  Google Scholar 

  • Monteoliva-Sanchez, M., Ramos-Cormenzana, A., and Russell, N.J. 1993. The effect of salinity and compatible solutes on the biosynthesis of cyclopropane fatty acids in Pseudomonas halosaccharolytica. J. Gen. Microbiol. 139: 1877–1884.

    CAS  Google Scholar 

  • Morita, M., Yamaguchi, N., Eguchi, T., and Kakinuma, K. 1998. Structural diversity of the membrane core lipids of extreme halophiles. Biosci. Biotechnol. Biochem. 62: 596–598.

    Article  CAS  Google Scholar 

  • Moritz, A., and Goebel, W. 1985. Characterization of the 7S RNA and its gene from halobacteria. Nucl. Acids. Res. 13: 6969–6979.

    Article  PubMed  CAS  Google Scholar 

  • Morth, S., and Tindall, B.J. 1985a. Variation of polar lipid composition within haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 6: 247–250.

    CAS  Google Scholar 

  • Morth, S., and Tindall, B.J. 1985b. Evidence that changes in the growth conditions affect the relative distribution of diether lipids in haloalkaliphilic archaebacteria. FEMS Microbiol. Lett. 29: 285–288

    Article  CAS  Google Scholar 

  • Mouné, S., Eatock, C., Matheron, R., Willison, J.C., Hirschler, A., Herbert, R., and Caumette, P. 2000. Orenia salinaria sp. nov., a fermentative bacterium isolated from anaerobic sediments of Mediterranean salterns. Int. J. Syst. Evol. Microbiol. 50: 721–729.

    PubMed  Google Scholar 

  • Mullakhanbhai, M.F., and Francis, G.W. 1972. Bacterial lipids. 1. Lipid composition of a moderately halophilic bacterium. Acta Chem. Scand. 26: 1399–1410.

    Article  PubMed  CAS  Google Scholar 

  • Mullakhanbhai, M.F., and Larsen, H. 1975. Halobacterium volcanii spec, nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol. 104: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Mwatha, W.E., and Grant, W.D. 1993. Natronobacterium vacuolata, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int. J. Syst. Bacteriol. 43: 401–404.

    Article  Google Scholar 

  • Nakamura, S., Aono, R., Mizutani, S., Takashina, T., Grant, W.D., and Horikoshi, K. 1992. The cell surface glycoprotein of Haloarcula japonica TR-1. Biosci. Biotechnol. Biochem. 56: 996–998.

    Article  CAS  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenberger, T.A., Peck, R.F., Pohlschroder, M., Spudich, J.L., Jong, K.-H., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., and DasSarma, S. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 12176–12181.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus, B., Lanzotti, V., Trincone, A., De Rosa, M., Grant, W.D., and Gambacorta, A. 1989. Glycine betaine and polar lipid composition in halophilic archaebacteria in response to growth in different salt concentrations. FEMS Microbiol. Lett. 59: 157–160.

    Article  CAS  Google Scholar 

  • Nicolaus, B., Lama, L., Esposito, E., Manca, M.C., Improta, R., Bellitti, MR., Duckworth, A.W., Grant, W.D., and Gambacorta, A. 1999. Haloarcula spp able to biosynthesize exo-and endopolymers. J. Ind. Microbiol. Biotechnol. 23: 489–496.

    Article  CAS  Google Scholar 

  • Niemetz, R., Kärcher, U, Kandler, O., Tindall, B.J., and König, H. 1997. The cell wall polymer of the extremely halphilic archaeon Natronococcus occultus. Eur. J. Biochem. 249: 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, Y., Takashina, T., Grant, W.D., and Horikoshi, K. 1992. Ultrastructure of the cell wall of the triangular halophilic archaebacterium Haloarcula japonica strain TR-1. FEMS Microbiol. Lett. 99: 43–48.

    Article  CAS  Google Scholar 

  • Nissen, H., and Dundas, I.D. 1984. Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch. Microbiol. 138: 251–256.

    Article  CAS  Google Scholar 

  • Norton, C.F., McGenity, T.J., and Grant, W.D. 1993. Archaeal halophiles (halobacteria) from two British salt mines. J. Gen. Microbiol. 139: 1077–1081.

    CAS  Google Scholar 

  • Offner, S., Ziese, U., Wanner, G., Typke, D., and Pfeifer, F. 1998. Structural characteristics of halobacterial gas vesicles. Microbiology UK 144: 1331–1342.

    Article  CAS  Google Scholar 

  • Ohno, Y., Yano, I., Hiramatsu, T., and Masui, M. 1976. Lipids and fatty acids of a moderately halophilic bacterium, no. 101. Biochim. Biophys. Acta 424: 337–350.

    PubMed  CAS  Google Scholar 

  • Ohno, Y., Yano, I., and Masui, M. 1979. Effect of NaCl concentration and temperature on phospholipid and fatty acid composition of a moderately halophilic bacterium Pseudomonas halosaccharolytica. J. Biochem. 85: 413–421.

    PubMed  CAS  Google Scholar 

  • Ohno, Y., Hara, H., Toriyama, S., Yano, I., and Masui, M. 1980. Biosynthesis of glucophospholipids in Pseudomonas halosaccharolytica, pp. 181–187 in: Morishita, H., and Masui, M. (Eds.), Saline environments. Proceedings of the Japanese conference on halophilic microbiology. Nakanishi Printing Co., Kyoto.

    Google Scholar 

  • Onishi, H., Kobayashi, Y., Iwao, S., and Kamekura, M. 1985. Archaebacterial diether lipids in a nonalkalophilic, non-pigmented extremely halophilic bacterium. Agric. Biol. Chem. 49: 3053–3055.

    CAS  Google Scholar 

  • Oren, A. 1983. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1987. A procedure for the selective enrichment of Halobacteroides halobius and related bacteria from anaerobic hypersaline sediments. FEMS Microbiol. Lett. 42: 201–204.

    Article  Google Scholar 

  • Oren, A. 1994. Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int. J. Salt Lake Res. 3: 15–29.

    Article  Google Scholar 

  • Oren, A. 1999. The enigma of square and triangular halophilic archaea, pp. 337–355 In: Seckbach, J. (Ed.), Enigmatic microorganisms and life in extreme environmental habitats. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Oren, A., and Gurevich, P. 1993. Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol. Ecol. 12: 249–256.

    Article  CAS  Google Scholar 

  • Oren, A., Pohla, H., and Stackebrandt, E. 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb, nov., and description of Sporohalobacter marismortui sp. nov. Syst. Appl. Microbiol. 9: 239–246.

    CAS  Google Scholar 

  • Oren, A., Kessel, M., and Stackebrandt, E. 1989. Ectothiorhodospira marismortui sp. nov., an obligately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch. Microbiol. 151: 524–529.

    Article  CAS  Google Scholar 

  • Oren, A., Duker, S., and Ritter, S. 1996. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol. Lett. 138: 135–140.

    Article  CAS  Google Scholar 

  • Oren, A., Ventosa, A., Gutiérrez, M.C., and Kamekura, M. 1999. Haloarcula quadrata sp. nov., a square, motile Haloarcula species from a brine pool in Sinai (Egypt). Int. J. Syst. Bacteriol. 49: 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  • Otozai, K., Takashina, T., and Grant, W.D. 1991. A novel triangular archaebacterium, Haloarcula japonica, pp. 63–75 In: Horikoshi, K., and Grant, W.D. (Eds.), Superbugs. Microorganisms in extreme environments. Japan Scientific Societies Press, Tokyo/Springer-Verlag, Berlin.

    Google Scholar 

  • Paramonov, N.A., Parolis, L.A.S., Parolis, H., Boán, I.F., Antón, J., and Rodríguez-Valera, F. 1998. The structure of the exocellular polysaccharide produced by the archaeon Haloferax gibbonsii (ATCC 33959). Carbohydr. Res. 309: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Parkes, K., and Walsby, A.E. 1981. Ultrastructure of a gas-vacuolate square bacterium. J. Gen. Microbiol. 126: 503–506.

    Google Scholar 

  • Parolis, H., Parolis, L.A.S., Boán, I.F., Rodríguez-Valera, F., Widmalm, G., Manca, M.C., Jansson, P.-E., and Sutherland, I.W. 1996. The structure of the exopolysaccharide produced by the halophilic archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr. Res. 295: 147–156.

    PubMed  CAS  Google Scholar 

  • Parolis, L.A.S., Parolis, H., Paramonov, N.A., Boán, I.F., Antón, J., and Rodríguez-Valera, F. 1999. Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 3596. Carbohydr. Res. 319: 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Patenge, N., Berendes, A., Engelhardt, H., Schuster, S.C., and Oesterhelt, D. 2001. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol. Microbiol. 41: 653–663

    Article  PubMed  CAS  Google Scholar 

  • Paul, G., and Wieland, F. 1987. Sequence of the halobacterial glycosaminoglycan. J. Biol. Chem. 262: 9587–9593.

    PubMed  CAS  Google Scholar 

  • Paul, G., Lottspeich, F., and Wieland, F. 1986. Asparaginyl-N-acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan. J. Biol. Chem. 261: 1020–1024.

    PubMed  CAS  Google Scholar 

  • Penczek, P., Ban, N., Grassucci, R.A., Agarwal, R.K., and Frank, J. 1999. Haloarcula marismortui 50 S subunit — complementarity of electron microscopy and X-ray crystallographic information. J. Struct. Biol. 128: 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Peleg, E., and Tietz, A. 1971. Glycolipids of a halotolerant moderately halophilic bacterium. FEMS Microbiol. Lett. 15: 309–312.

    CAS  Google Scholar 

  • Peleg, E., and Tietz, A. 1973. Phospholipids of a moderately halophilic halotolerant bacterium. Isolation and identification of glucosylphosphatidylglycerol. Biochim. Biophys. Acta 306: 368–379.

    PubMed  CAS  Google Scholar 

  • Petter, H.F.M. 1931. On bacteria of salted fish. Proc. Kon. Akad. Wetensch. Ser. B 34: 1417–1423.

    CAS  Google Scholar 

  • Pfeifer, F., and Englert, C. 1992. Function and biosynthesis of gas vesicles in halophilic Archaea. J. Bioenerg. Biomembr. 24: 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, F., Krüger, K., Röder, R., Mayr, A, Ziesche, S., and Offner, S. 1997. Gas vesicle formation in halophilic Archaea. Arch. Microbiol. 167: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, F., Zotzel, J., Kurenbach, B., Röder, R., and Zimmermann, P. 2001. A p-loop motif and two basic regions in the regulatory protein GvpD are important for the repression of gas vesicle formation in the archaeon Haloferax mediterranei. Microbiology UK 147: 63–73.

    CAS  Google Scholar 

  • Pfeifer, F., Gregor, D., Hofacker, A., Plosser, P., and Zimmermann, P. 2002. Regulation of gas vesicle formation in halophilic archaea. J. Mol. Microbiol. Biotechnol. 4: 175–181.

    PubMed  CAS  Google Scholar 

  • Pugh, E.L., and Kates, M. 1994. Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1196: 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E.L., Wassef, M.K., and Kates, M. 1971. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can. J. Biochem. 49: 953–958.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, D.-F., Games, M.P.L., Xiao, X.-Y., Games, D.E., and Walton, T.J. 2000. Characterisation of membrane phospholipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun. Mass Spectr. 14: 1586–1591.

    CAS  Google Scholar 

  • Quesada, E., Bejar, V., and Calvo, C. 1993. Exopolysaccharide production by Volcaniella eurihalina. Experientia 49: 1037–1041.

    Article  CAS  Google Scholar 

  • Reistad, R. 1971. Cell wall of an extremely halophilic coccus. Investigation of ninhydrin-positive compounds. Arch. f. Mikrobiol. 82: 24–30.

    Article  Google Scholar 

  • Ring, G., and Eichler, J. 2001. Characterization of inverted membrane vesicles from the halophilic archaeon Haloferax volcanii. J. Membrane Biol. 183: 195–204.

    Article  CAS  Google Scholar 

  • Robertson, J.D., Schreil, W., and Reedy, M. 1982. Halobacterium halobium I: A thin-sectioning electronmicroscopic study. J. Ultrastr. Res. 80: 148–162.

    Article  CAS  Google Scholar 

  • Röder, R., and Pfeifer, F. 1996. Influence of salt on the transcription of the gas-vesicle gene of Haloferax mediterranei and identification of the endogenous transcriptional activator. Microbiology UK 142: 1715–1723.

    Article  Google Scholar 

  • Rodriguez-Valera, F., and Lillo, J.A.G. 1992. Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol. Rev. 103: 181–186.

    Article  CAS  Google Scholar 

  • Romanenko, V.I. 1981. Square microcolonies in the surface water film of the Saxkoye lake. Mikrobiologiya 50: 571–574 (in Russian).

    Google Scholar 

  • Ross, H.N.M., Collins, M.D., Tindall, B.J., and Grant, W.D. 1981. A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J. Gen. Microbiol. 123: 75–80.

    CAS  Google Scholar 

  • Ruepp, A., Wanner, G., and Soppa, J. 1998. A 71-kDa protein from Halobacterium salinarium belongs to a ubiquitous P-loop ATPase superfamily with head-rod-tail structure. Arch. Microbiol. 169: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Russell, N.J. 1989. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. 21: 93–113.

    Article  PubMed  CAS  Google Scholar 

  • Russell, N.J. 1993. Lipids of halophilic and halotolerant microorganisms, pp. 163–210 In: Vreeland R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Russell, N.J., and Kogut, M. 1985. Haloadaptation: salt sensing and cell-envelope changes. Microbiol. Sci. 2: 345–350.

    PubMed  CAS  Google Scholar 

  • Russell, N.J., Kogut, M., and Kates, M. 1985. Phospholipid biosynthesis in the moderately halophilic bacterium Vibrio costicola during adaptation to changing salt concentrations. J. Gen. Microbiol. 131: 781–789.

    CAS  Google Scholar 

  • Russell, N.J., Adams, R., Bygraves, J., and Kogut, M. 1986. Cell envelope phospholipid changes in a moderate halophile during phenotypic adaptation to altered salinity and osmotic stress. FEMS Microbiol Rev. 39: 103–107.

    Article  CAS  Google Scholar 

  • Sagami, H., Kikuchi, A., Ogura, K., Fushihara, K., and Nishino, T. 1994. Novel isoprenoid proteins in Halobacteria. Biochem. Biophys. Res. Commun. 203: 972–978.

    Article  PubMed  CAS  Google Scholar 

  • Sagami, H., Kikuchi, A., and Ogura, K. 1995. A novel type of modification by isoprenoid-derived materials-diphytanylglycerylated proteins in halobacteria. J. Biol. Chem. 270: 14851–14854.

    Article  PubMed  CAS  Google Scholar 

  • Schleifer, K.H., Steber, J., and Mayer, H. 1982. Chemical composition and structure of the cell wall of Halococcus morrhuae. Zbl. Bakt. Hyg.l Abt. Orig. C 3: 171–178.

    CAS  Google Scholar 

  • Serganova, I., Ksenzenko, K., Serganov, A., Meshcheryakova, I., Pyatibratov, M., Vakhrusheva, O., Metlina, A., and Fedorov, O. 2002. Sequencing of flagellin genes from Natrialba magadii provides new insight into evolutionary aspects of archaeal flagellins. J. Bacteriol. 184: 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Severina, L.O., Usenko, I.A., and Plakunov, V.K. 1989. Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium Halobacterium mediterranei. Mikrobiologiya 58: 557–561 (Microbiology 58: 441–445).

    CAS  Google Scholar 

  • Severina, L.O., Usenko, I.A., and Plakunov, V.K. 1990. Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium, Halobacterium volcanii. Mikrobiologiya 59: 437–442 (Microbiology 59: 292–296).

    CAS  Google Scholar 

  • Shevack, A., Gewitz, H.S., Hennemann, B., Yonath, A., and Wittmann, H.G. 1985. Characterization and crystallization of ribosomal particles from Halobacterium marismortui. FEBS Lett. 184: 68–71.

    Article  CAS  Google Scholar 

  • Simon, R.D. 1978. Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature 273: 314–317.

    Article  PubMed  CAS  Google Scholar 

  • Simon, R.D. 1980. Interactions between light and gas vacuoles in Halobacterium salinarium strain 5: effect of ultraviolet light. Appl. Environ. Microbiol. 40: 984–987.

    PubMed  CAS  Google Scholar 

  • Simon, R.D. 1981. Morphology and protein composition of gas vesicles from wild type and gas vacuole defective strains of Halobacterium salinarium strain 5. J. Gen. Microbiol. 125: 103–111.

    CAS  Google Scholar 

  • Sioud, M., Baldacci, G., Forterre, P., and de Recondo, A.M. 1987. Antitumor drugs inhibit the growth of halophilic archaebacteria. Eur. J. Biochem. 169: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Skerratt, J.H., Nichols, P.D., Mancuso, C.A., James, S.R., Dobson, S.J., McMeekin, T.A., and Burton, H. 1991. The phospholipid ester-linked fatty acid composition of members of the family Halomonadaceae and genus Flavobacterium: a chemotaxonomic guide. Syst. Appl. Microbiol. 14: 8–13.

    CAS  Google Scholar 

  • Smallbone, B.W., and Kates, M. 1981. Structural identification of minor glycolipids in Halobacterium cutirubrum. Biochim. Biophys. Acta 665: 551–558.

    CAS  Google Scholar 

  • Smirnov, A.V., Kulakovskaya, T.V., and Kulaev, I.S. 2002. Phosphate accumulation by an extremely halophilic archae Halobacterium salinarium. Process Biochem. 37: 643–649.

    Article  CAS  Google Scholar 

  • Soo-Hoo, T.S., and Brown, A.D. 1967. A basis for the specific sodium requirement for morphological integrity of Halobacterium halobium. Biochim. Biophys. Acta 135: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Sprey, B., and Bochem, P.-P. 1981. Uptake of uranium into the alga Dunaliella detected by EDAX and LAMMA. Fresenius Z. Anal. Chem. 308: 239–245.

    Article  CAS  Google Scholar 

  • Spring, S., Ludwig, W., Marquez, M.C., Ventosa, A., and Schleifer, K.-H. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46: 492–496.

    Article  Google Scholar 

  • Steber, J., and Schleifer, K.H. 1975. Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch. Microbiol. 105: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Steber, J., and Schleifer, K.H. 1979. N-glycyl-glucosamine: a novel constituent in the cell wall of Halococcus morrhuae. Arch. Microbiol. 123: 209–212.

    Article  CAS  Google Scholar 

  • Steensland, H., and Larsen, H. 1969. A study of the cell envelope of the halobacteria. J. Gen. Microbiol. 55: 325–336.

    PubMed  CAS  Google Scholar 

  • Steensland, H., and Larsen, H. 1971. The fine structure of the extremely halophilic cocci. Kong. Norske Vidensk. Selsk. Skr. 8: 1–5.

    Google Scholar 

  • Stern, N., and Tietz, A. 1973a. Glycolipids of a halotolerant, moderately halophilic bacterium. I. The effect of growth medium and age of culture on lipid composition. Biochim. Biophys. Acta 296: 130–135.

    PubMed  CAS  Google Scholar 

  • Stern, N., and Tietz, A. 1973b. Glycolipids of a halotolerant, moderately halophilic bacterium. II. Biosynthesis of glucuronosyldiglyceride by cell-free particles. Biochim. Biophys. Acta 296: 136–144

    PubMed  CAS  Google Scholar 

  • Stern, N., ad Tietz, A. 1978. Glycolipids of a halotolerant, moderately halophilic bacterium. Biosynthesis of glucosylphosphatidylglycerol by cell-free particles. Biochim. Biophys. Acta 530: 357–366.

    PubMed  CAS  Google Scholar 

  • Stoeckenius, W. 1981. Walsby’s square bacterium: fine structure of an orthogonal procaryote. J. Bacteriol. 148: 352–360.

    PubMed  CAS  Google Scholar 

  • Stoeckenius, W., and Kunau, W.H. 1968. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J. Cell Biol. 38: 337–357.

    Article  Google Scholar 

  • Stoeckenius, W., and Rowen, R. 1967. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J. Cell Biol. 34: 365–393.

    Article  PubMed  CAS  Google Scholar 

  • Sudo, H., Burgess, J.G., Takemasa, H., Nakamura, N., and Matsunaga, T. 1995. Sulfated exopolysaccaride production by the halophilic cyanobacterium Aphanothece halophytica. Curr. Microbiol. 30: 219–222.

    Article  CAS  Google Scholar 

  • Sumper, M. 1987. Halobacterial glycoprotein biosynthesis. Biochim. Biophys. Acta 906: 69–79.

    PubMed  CAS  Google Scholar 

  • Sumper, M., Berg, E., Mengele, R., and Strobel, I. 1990. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J. Bacteriol. 172: 7111–7118.

    PubMed  CAS  Google Scholar 

  • Sutton, G.C., Quinn, P.J., and Russell, N.J. 1990a. The effect of salinity on the composition of fatty acid double bond isomers and sn-1/sn-2 positional distribution in membrane phospholipids of a moderately halophilic eubacterium. Curr. Microbiol. 20: 43–46.

    Article  CAS  Google Scholar 

  • Sutton, G.C., Russell, N.J., and Quinn, P.J. 1990b. The effect of salinity on the phase behaviour of purified phosphatidylethanolamine and phosphatidylglycerol isolated from a moderately halophilic eubacterium. Chem. Phys. Lipids 56: 135–147.

    Article  CAS  Google Scholar 

  • Sutton, G.C., Russell, N.J., and Quinn, P.J. 1991. The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately halophilic eubacterium. Biochim. Biophys. Acta 1061: 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Tadros, M.H., Drews, G., and Evers, D. 1982. Peptidoglycan and protein, the major cell wall constituents of the obligate halophilic bacterium Rhodospirillum salexigens. Z. Naturforsch. 37c: 210–212.

    CAS  Google Scholar 

  • Takashina, T., Hamamoto, T., Otozai, K., Grant, W.D., and Horikoshi, K. 1990. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst. Appl. Microbiol. 13: 177–181.

    CAS  Google Scholar 

  • Tardy-Jaquenod, C., Magot, M., Patel, B.K.C., Matheron, R., and Caumette, P. 1998. Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil-producing facilities. Int. J. Syst. Bacteriol. 48: 333–338.

    Google Scholar 

  • Thiemann, B., and Imhoff, J.F. 1991. The effect of salt on the lipid composition of Ectothiorhodospira. Arch. Microbiol. 156: 376–384.

    Article  CAS  Google Scholar 

  • Tindall, BJ. 1985. Qualitative and quantitative distribution of diether lipids in haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 6: 243–246.

    CAS  Google Scholar 

  • Tindall, B.J. 1988. Prokaryotic life in the alkaline, saline, athalassic environment, pp. 31–67 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Tindall, B.J. 1990a. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66: 199–202.

    Article  CAS  Google Scholar 

  • Tindall, B.J. 1990b. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13: 128–130.

    CAS  Google Scholar 

  • Tindall, B.J., and Collins, M.D. 1986. Structure of 2-methyl-3-VIII-dihydrooctaprenyl-l,4-napthoquinone from Halococcus morrhuae. FEMS Microbiol. Lett. 37: 117–119.

    Article  CAS  Google Scholar 

  • Tindall, B.J., Tomlinson, G.A., and Hochstein, L.I. 1987. Polar lipid composition of a new halobacterium. Syst. Appl. Microbiol. 9: 6–8.

    PubMed  CAS  Google Scholar 

  • Tindall, B.J., Amendt, B., and Dahl, C. 1991. Variations in the lipid composition of aerobic, halophilic archaeobacteria, pp. 199–205 In: Rodriguez-Valera, F. (F.d.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Torreblanca, M.F., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M., and Kates, M. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Torrella, F. 1986. Isolation and adaptive strategies of haloarculae to extreme hypersaline habitats, p. 59 In: Abstracts of the fourth international symposium on microbial ecology, Ljubljana.

    Google Scholar 

  • Trachtenberg, S., Pinnick, B., and Kessel, M. 2000. The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J. Struct. Biol. 130: 10–26.

    Article  PubMed  CAS  Google Scholar 

  • Trincone, A., Nicolaus, B., Lama, L., De Rosa, M., Gambacorta, A., and Grant, W.D. 1990. The glycolipid of Halobacterium sodomense. J. Gen. Microbiol. 136: 2327–2331.

    Google Scholar 

  • Trincone, A., Trivellone, E., Nicolaus, B., Lama, L., Pagnotta, E., Grant, W.D., and Gambacorta, A. 1993. The glycolipid of Halobacterium trapanicum. Biochim. Biophys. Acta 1210: 35–40.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, K., Yorimitsu, S., Takahashi, T., and Ohashi, M. 1989. Revised structure of a phospholipid obtained from Halobacterium halobium. J. Chem. Soc. Chem. Commun. 10: 668–670.

    Article  Google Scholar 

  • Upasani, V., and Desai, S. 1990. Sambhar Salt Lake. Chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Arch. Microbiol. 154: 589–593.

    Article  CAS  Google Scholar 

  • Upasani, V.N., Desai, S.G., Moldoveanu, N., and Kates, M. 1994. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology UK 140: 1959–1966.

    Article  CAS  Google Scholar 

  • Usukura, J., Yamada, E., Tokunaga, F., and Yoshizawa, T. 1980. Ultrastructure of purple membrane and cell wall of Halobacterium halobium. J. Ultrastr. Res. 70: 204–219.

    Article  CAS  Google Scholar 

  • Ventura, S., De Philippis, R., Materassi, R., and Balloni, W. 1988. Two halophilic Ectothiorhodospira strains with unusual morphological, physiological and biochemical characters. Arch. Microbiol. 149: 273–279.

    Article  CAS  Google Scholar 

  • Vreeland, R.H. 1987. Mechanisms of halotolerance in microorganisms. CRC Crit. Rev. Microbiol. 14: 311–356.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Anderson, R., and Murray, R.G.E. 1984. Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. J. Bacteriol. 160: 879–883.

    PubMed  CAS  Google Scholar 

  • Vreeland, R.H., Daigle, S.L., Fields, ST., Hart, D.J., and Martin, E.L. 1991. Physiology of Halomonas elongata in different NaCl concentrations, pp. 233–241 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Wais, A.C. 1985. Cellular morphogenesis in a halophilic archaebacterium. Curr. Microbiol. 12: 191–196.

    Article  Google Scholar 

  • Wakai, H., Nakamura, S., Kawasaki, H., Takada, K., Mizutani, S., Aono, R., and Horikoshi, K. 1997. Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles 1: 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.E., Hayes, P.K, and Walsby, A.E. 1984. Homology of gas vesicle proteins in cyanobacteria and halobacteria. J. Gen. Microbiol. 130: 2709–2715.

    CAS  Google Scholar 

  • Walsby, A.E. 1971. The pressure relationships of gas vacuoles. Proc. R. Soc. London B 178: 301–326.

    Article  Google Scholar 

  • Walsby, A.E. 1980. A square bacterium. Nature 283: 69–71.

    Article  Google Scholar 

  • Wanner, G., Steiner, R., and Scheer, H. 1986. A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris. Arch. Microbiol. 146: 267–274.

    Article  CAS  Google Scholar 

  • Weidinger, G., Klotz, G., and Goebel, G. 1979. A large plasmid from Halobacterium halobium carrying information for gas vacuole formation. Plasmid 2; 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Wieland, F. 1988. The cell surfaces of halobacteria, pp. 55–65 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria. Vol. II. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wieland, F., Dompert, W., Bernhardt, G., and Sumper, M. 1980. Halobacterial glycoprotein saccharides contain covalently linked sulphate. FEBS Lett. 120: 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Wieland, F., Lechner, J., Bernhardt, G., and Sumper, M. 1981. Sulphation of a repetitive saccharide in halobacterial cell wall glycoprotein. FEBS Lett. 132: 319–323.

    Article  CAS  Google Scholar 

  • Wieland, F., Lechner, J., and Sumper, M. 1982. The cell wall glycoprotein of Halobacterium: structural, functional and biosynthetic aspects. Zbl. Bakt. Hyg. I Abt. Orig. C 3: 161–170.

    CAS  Google Scholar 

  • Wieland, F., Paul, G., and Sumper, M. 1985. Halobacterial flagellins are sulfated glycoproteins. J. Biol. Chem. 260: 15180–15185.

    PubMed  CAS  Google Scholar 

  • Yonath, A. 2002. High-resolution structures of large ribosomal subunits from mesophilic eubacteria and halophilic archaea at various functional states. Curr. Protein Peptide Sci. 3: 67–78.

    Article  CAS  Google Scholar 

  • Zhang, D., and Poulter, C.D. 1993. Biosynthesis of archaebacterial lipids in Halobacterium halobium and Methanobacterium thermoautotrophicum. J. Org. Chem. 58: 3919–3923.

    Article  CAS  Google Scholar 

  • Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., and Rainey, F.A. 1996. Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetogenic bacterium: a new member of Haloanaerobiales. Curr. Microbiol. 32: 320–326.

    Article  PubMed  CAS  Google Scholar 

  • Zhilina, T.N., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., and Lysenko, A.M. 1999. Orenia sivashensis sp. nov., a new moderately halophilic anaerobic bacterium from Lake Sivash lagoons Mikrobiologiya 68: 519–527 (Microbiology 68: 452–459).

    Google Scholar 

  • Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., and Zavarzin, G.A. 2001. Halonatronum saccharophilum gen. nov., sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaerobiales from Lake Magadi. Mikrobiologiya 70: 77–85 (Microbiology 70: 64–72).

    CAS  Google Scholar 

  • Zwieb, C., and Eichler, J. 2002. Getting on target: the archaeal signal recognition particle. Archaea 1: 27–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). The Cellular Structure of Halophilic Microorganisms. In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics