Skip to main content

Genetics and Genomics of Halophilic Archaea and Bacteria

  • Chapter
Halophilic Microorganisms and their Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

  • 597 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.4. References

  • Arvanitis, N., Vargas, C., Tegos, G., Perysinakis. A., Nieto, J.J., Ventosa, A., and Drainas, C. 1995. Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae. Appl. Environ. Microbiol. 61: 3821–3825.

    PubMed  CAS  Google Scholar 

  • Asgarani, E., Funamizu, H., Saito, T., Terato, H., Ohyama, Y., Yamamoto, O., and Ide, H. 1999. Mechanisms of DNA protection in Halobacterium salinarium, an extremely halophilic bacterium. Microhiol. Res. 154: 185–190.

    CAS  Google Scholar 

  • Baliga, N.S., Goo, Y.A., Ng, W.V., Hood, L., Daniels, C.J., and DasSarma, S. 2000. Is gene expression I Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol. Microbiol. 36: 1184–1185.

    Article  PubMed  CAS  Google Scholar 

  • Blaseio, U., and Pfeifer, F. 1990. Transformation of Halobacterium halobium — development of vectors and investigation of gas vesicle synthesis. Proc. Natl. Acad. Sci. USA 87: 6772–6776.

    Article  PubMed  CAS  Google Scholar 

  • Bobovnikova, Y., Ng, W.-L., DasSarma, S., and Hackett, N.R. 1994. Restriction mapping the genome of Halobacterium halobium strain NRC-1. Syst. Appl. Microbiol. 16: 597–604.

    CAS  Google Scholar 

  • Bonelo, G., Megias, M., Ventosa, A., Nieto, J.J., and Ruiz-Berraquero, F. 1984. Lethality and mutagenicity in Halobacterium mediterranei caused by N-methyl-N′-nitro-N-nitrosoguanidine. Curr. Microbiol. 11: 165–170.

    Article  CAS  Google Scholar 

  • Borghese, R., Zagnoli, A., and Zannoni, D. 2001. Plasmid transfer and susceptibility to antibiotics in the halophilic phototrophs Rhodovibrio salinarum and Rhodothalassium salexigens. FEMS Microbiol. Lett. 197: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Cánovas, D., Vargas, C., Ventosa, A., and Nieto, J.J. 1997. Salt sensitive and auxotrophic mutants of Halomonas elongata and H. meridiana by use of hydroxylamine mutagenesis. Curr. Microbiol. 34: 85–90.

    Article  Google Scholar 

  • Charlebois, R.L. 1995a. Appendix 3. Physical and genetic map of the genome of Halobacterium volcanii DS2, pp. 231–235 In: DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Charlebois, R.L. 1995b. Appendix 4. Physical and genetic map of the genome of Halobacterium sp. GRB, pp. 237–239 In: DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Charlebois, R.L. 1999. Evolutionary origins of the haloarchaeal genome, pp. 309–317 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Ralon.

    Google Scholar 

  • Charlebois, R.L., and DasSarma, S. 1995. Appendix 7. Insertion elements of halophiles, pp. 253–255 In: DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Charlebois, R.L., Lam, W.L., Cline, S.W., and Doolittle, W.F. 1987. Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc. Natl. Acad. Sci. USA 84: 8530–8534.

    Article  PubMed  CAS  Google Scholar 

  • Charlebois, R.L., Hofman, J.D., Schalkwyk, L.C., Lam, W.L., and Doolittle, W.F. 1989. Genome mapping in halobacteria. Can. J. Microbiol. 35: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Charlebois, R.L., Schalkwyk, L.C., Hofman, J.D., and Doolittle, W.F. 1991. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J. Mol. Biol. 222: 509–524.

    Article  PubMed  CAS  Google Scholar 

  • Cline, S.W., and Doolittle, W.F. 1987. Efficient transfection of the archaebacterium Halobacterium halobium. J. Bacteriol. 169: 1341–1344.

    PubMed  CAS  Google Scholar 

  • Cline, S.W., and Doolittle, W.F. 1992. Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J. Bacteriol. 174: 1076–1080

    PubMed  CAS  Google Scholar 

  • Cline, S.W., Lam, W.L., Charlebois, R.L, Schalkwyk, L.C., and Doolittle, W.F. 1989a. Transformation methods for halophilic archaebacteria. Can. J. Microbiol. 35: 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Cline, S.W., Schalkwyk, L.C., and Doolittle, W.F. 1989b. Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J. Bacteriol. 171: 4987–4991.

    PubMed  CAS  Google Scholar 

  • Cline, S.W., Pfeifer, F., and Doolittle, W.F. 1995. Transformation of halophilic Archaea, pp. 197–204 In: DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Cohen, A, Lam, W.L., Charlebois, R.L., Doolittle, W.F., and Schalkwyk, L.C. 1992. Localizing genes on the map of the genome of Haloferax volcanii, one of the archaea. Proc. Natl. Acad. Sci. USA 89: 1602–1606.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, M.-J., Vargas, C., Kunte, H.J., Galinski, E.A., Ventosa, A., and Nieto, J.J. 1995. Influence of salt concentration on the susceptibility of moderately halophilic bacteria to antimicrobials and its potential use for genetic transfer studies. Curr. Microbiol. 31: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, C.J., Gupta, R., and Doolittle, W.F. 1985. Transcription and excision of a large intron in the tRNA Trp gene of an archaebacterium, Halobacterium volcanii. J. Biol. Chem. 260: 3132–3134.

    PubMed  CAS  Google Scholar 

  • DasSarma, S. 1993. Identification and analysis of the gas vesicle cluster on an unstable plasmid of Halobacterium halobium. Experientia 49: 482–486.

    Article  PubMed  CAS  Google Scholar 

  • DasSarma, S. 1995. Natural plasmids and plasmid vectors of halophiles, pp. 241–250 In DasSarma, S., and Fleischmann, E.M. (Eds.), Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • DasSarma, S., and Arora, P. 1997. Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiol. Lett. 153: 1–10.

    Article  CAS  Google Scholar 

  • DasSarma, S., RajBhandary, U.L., and Khorana, H.G. 1983. High-frequency spontaneous mutation in the bacterio-opsin gene in Halobacterium halobium is mediated by transposable elements. Proc. Natl. Acad. Sci. USA 80: 2201–2205.

    Article  PubMed  CAS  Google Scholar 

  • DasSarma, S., Kennedy, S.P., Berquist, B., Ng, W.N., Baliga, N.S., Spudich, J.L., Krebs, J.A., Johnson, C.H., and Hood, L. 2001. Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth. Res. 70: 3–17.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F., and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F., Lam, W.L., Schalkwyk, L.C., Charlebois, R.L., Cline, S.W., and Cohen, A. 1992. Progress in developing the genetics of the halobacteria, pp. 73–78 In: Danson, M.J., Hough, D.W., and Lunt, G.G. (Eds.), Archaebacteria: biochemistry and biotechnology. Biochemical Society Symposium no. 58. Biochemical Society, High Holburn, London.

    Google Scholar 

  • Dyall-Smith, M.L. 2001. The halohandbook: protocols for halobacterial genetics. Version 4.5. http://www.microbiol.unimelb.edu.au/micro/staff/mds/HaloHandbook/index.html (last accessed: December 23, 2001; last updated: December 2001).

  • Dyall-Smith, M.L., and Doolittle, W.F. 1994. Construction of composite transposons for halophilic archaebacteria (Archaea). Can. J. Microbiol. 40: 922–929.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, K., Goebel, W., and Pfeifer, F. 1984. Homologies between heterogeneous extrachromosomal DNA populations of Halobacterium halobium and four new halobacterial isolates. Mol. Gen. Genet. 194: 91–97.

    Article  CAS  Google Scholar 

  • Ebert, K., Goebel, W., Rdest, U., and Surek, B. 1986. Genome and gene structure in halobacteria. Syst. Appl. Microbiol. 7: 30–35.

    CAS  Google Scholar 

  • Economou, A., Roussis, A., Milioni, D., and Katinakis, P. 1989. Patterns of protein synthesis in the moderately halophilic bacterium Deleya halophila in response to sudden changes in external salinity. FEMS Microbiol. Ecol. 62: 103–110.

    Article  CAS  Google Scholar 

  • Fernández-Castillo, R., Nieto, J.J., Megías, M., and Ruiz-Berraquero, F. 1990. Efficient hydroxylamine mutagenesis of Haloferax mediterranei and other extremely halophilic archaebacteria. Curr. Microbiol. 21: 83–89.

    Article  Google Scholar 

  • Fernandez-Castillo, R., Vargas, C., Nieto, J.J., Ventosa, A., and Ruiz-Berraquero, F. 1992. Characterization of a plasmid from moderately halophilic eubacteria. J. Gen. Microbiol. 138: 1133–1137.

    PubMed  CAS  Google Scholar 

  • Ferrer, C., Mojica, F.J.M., Juez, G., and Rodríguez-Valera, F. 1996. Differentially transcribed regions of Haloferax volcanii genome depending on the medium salinity. J. Bacteriol. 178: 309–313.

    PubMed  CAS  Google Scholar 

  • Fitt, P.S., and Sharma, N. 1987. The fate of thymine-containing dimers in ultraviolet-irradiated Halobacterium cutirubrum. Biochim. Biophys. Acta 910: 103–110.

    PubMed  CAS  Google Scholar 

  • Fitt, P.S., Sharma, N., and Castellanos, G. 1983. A comparison of liquid-holding recovery and photoreactivation in halophilic bacteria. Biochim. Biophys. Acta 739: 73–78.

    PubMed  CAS  Google Scholar 

  • Forterre, P., Elie, C., and Kohiyama, M. 1984. Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria. J. Bacteriol. 159: 800–802.

    PubMed  CAS  Google Scholar 

  • Forterre, P., Nadal, M., Elie, C., Mirambeau, G., Jaxel, C., and Duguet, M. 1986. Mechanisms of DNA synthesis and topoisomerisation in archaebacteria — reverse gyration in vitro and in vivo. Syst. Appl. Microbiol. 7: 67–71.

    CAS  Google Scholar 

  • Franzetti, B., Schoehn, G., Ebel, C., Gagnon, J., Ruigrok, R.W.H., and Zaccai, G. 2001. Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. J. Biol. Chem. 276: 29906–29914.

    Article  PubMed  CAS  Google Scholar 

  • Gadelle, D., and Forterre, P. 1994. DNA intercalating drugs inhibit positive supercoiling induced by novobiocin in halophilic archaea. FEMS Microbiol. Lett. 123: 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Gregor, D., and Pfeifer, F. 2001. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology UK 147: 1745–1754.

    CAS  Google Scholar 

  • Grey, V.L., and Fitt, P.S. 1976. Evidence for lack of deoxyribonucleic acid dark-repair in Halobacterium cutirubrum. Biochem. J. 156: 569–575.

    PubMed  CAS  Google Scholar 

  • Gutiérrez, M.C., García, M.T., Ventosa, A., Nieto, J.J., and Ruiz-Berraquero, F. 1986. Occurrence of megaplasmids in halobacteria. J. Appl. Bacteriol. 61: 67–71.

    Google Scholar 

  • Hackett, N.R., Bobovnikova, Y., and Heyrovska, N. 1994. Conservation of chromosomal arrangement among three strains of the genetically unstable archaeon Halobacterium salinarium. J. Bacteriol. 176: 7711–7718.

    PubMed  CAS  Google Scholar 

  • Hescox, M.A., and Carlberg, D.M. 1972. Photoreactivation in Halobacterium cutirubrum. Can. J. Microbiol 18: 981–985.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu, T., Ohno, Y., Hara, H., Toriyama, S., Yano, I., and Masui, M. 1978. Salt-dependent change of cell envelope components of a moderately halophilic bacterium, Pseudomonas halosaccharolytica, pp. 515–520 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hiramatsu, T., Ohno, Y,, Hara, H., Yano, I., and Masui, M. 1980a. Effects of NaCl concentration on the envelope components in a moderately halophilic bacterium, Pseudomonas halosaccharolytica, pp. 189–200 In: Morishita, H., and Masui, M. (Eds.), Saline environments. Proceedings of the Japanese Conference on Halophilic Microbiology. Nakanishi Printing Co., Kyoto.

    Google Scholar 

  • Hiramatsu, T., Yano, I., and Masui, M. 1980b. Effect of NaCl concentration on the protein species and phospholipid composition of the outer membrane in a moderately halophilic bacterium. FEMS Microbiol. Lett. 7: 289–292.

    Article  CAS  Google Scholar 

  • Holmes, M.L., and Dyall-Smith, M.L. 1990. A plasmid vector with a selectable marker for halophilic archaebacteria. J. Bacteriol. 172: 756–761.

    PubMed  CAS  Google Scholar 

  • Holmes, M.L., and Dyall-Smith, M.L. 1991. Mutations in DNA gyrase results in novobiocin resistance in halophilic archaebacteria. J. Bacteriol. 173: 642–648.

    PubMed  CAS  Google Scholar 

  • Holmes, M.L., and Dyall-Smith, M.L. 1999. Cloning, sequence and heterologous expression of bgaH, a betagalactosidase gene of “Haloferax alicantei”, pp. 265–271 In: Oren, A. (Ed.), Microbiology and biogeochemistry of halophilic microorganisms. CRC Press, Boca Raton.

    Google Scholar 

  • Holmes, M.L., Nuttall, S.D., and Dyall-Smith, M.L. 1991. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173: 3807–3813.

    PubMed  CAS  Google Scholar 

  • Holmes, M., Pfeifer, F., and Dyall-Smith, M. 1994. Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid. Gene 146: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, M.L., Scopes, R.K., Moritz, R.L., Simpson, R.J., Englert, C., Pfeifer, F., and Dyall-Smith, M.L. 1997. Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochim. Biophys. Acta 1337: 276–286.

    PubMed  CAS  Google Scholar 

  • Hüdepohl, U., Gropp, F., Horne, M., and Zillig, W. 1991. Heterologous in vitro transcription from two archaebacterial promoters. FEBS Lett. 285: 257–259.

    Article  PubMed  Google Scholar 

  • Jarrell, K.F., and Sprott, G.D. 1984. Formation and regeneration of Halobacterium spheroplasts. Curr. Microbiol. 10: 147–152.

    Article  Google Scholar 

  • Joshi, J.G., Guild, W.R., and Handler, P. 1963. The presence of two species of DNA in some halobacteria. J. Mol. Biol. 6: 34–38.

    Article  CAS  Google Scholar 

  • Juez, G., Rodriguez-Valera, F., Herrero, N., and Mojica, F.J.M. 1990. Evidence for salt-associated restriction pattern modifications in the archaebacterium Haloferax mediterranei. J. Bacteriol. 172: 7278–7281.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., Zhou, P., and Kushner, D.J. 1986. Protein turnover in Halobacterium cutirubrum and other microorganisms that live in extreme environments. Syst. Appl. Microbiol. 7: 330–336.

    Google Scholar 

  • Karamanou, S., and Katinakis, P. 1988. Heat shock proteins in the moderately halophilic bacterium Deleya halophila: protective effect of high salt concentration against thermal shock. Ann. Microbiol. 139: 505–514.

    CAS  Google Scholar 

  • Katinakis, P. 1989. The pattern of protein synthesis induced by heat-shock of the moderately halophilic bacterium Chromobacterium marismortui: protective effect of high salt concentration against the thermal shock. Microbiologica 12: 61–67.

    PubMed  CAS  Google Scholar 

  • Kennedy, S.P., Ng, W.V., Salzberg, S.L., Hood, L., and DasSarma, S. 2001. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res. 11: 1641–1650.

    Article  PubMed  CAS  Google Scholar 

  • Kogut, M., Mason, J.R., and Russell, N.J. 1992. Isolation of salt-sensitive mutants of the moderately halophilic eubacterium Vibrio costicola. Curr. Microbiol. 24: 325–328.

    Article  Google Scholar 

  • Krebs, M.P., Mollaaghababa, R., and Khorana, H.G. 1991. Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants. Proc. Natl. Acad. Sci. USA 88: 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, M.P., Hauss, T., Heyn, M.P., RajBandhary, U.L., and Khorana, H.G. 1993a. Expression of the bacteriorhodopsin gene in Halobacterium halobium using a multicopy plasmid. Proc. Natl. Acad. Sci. USA 90: 1987–1991.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, M.P., Spudich, E.N., Khorana, H.G., and Spudich, J.L. 1993b. Synthesis of a gene for sensory rhodopsin-I and its functional expression in Halobacterium halobium. Proc. Natl. Acad. Sci. USA 90: 3486–3490.

    Article  PubMed  CAS  Google Scholar 

  • Krömer, W.J., and Arndt, E. 1991. Halobacterial S9 operon. Three ribosomal protein genes are cotranscribed with genes encoding a tRNA Leu, the enolase, and a putative membrane protein in the archaebacterium Haloarcula (Halobacterium) marismortui. J. Biol. Chem. 266: 24573–24579.

    PubMed  Google Scholar 

  • Kunte, H.J., and Galinski, E.A. 1995. Transposon mutagenesis in halophilic eubacteria: conjugal transfer and insertion of transposon Tn5 and Tn1732 in Halomonas elongata. FEMS Microbiol. Lett. 128: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Kushner, D.J. 1993. Growth and nutrition of halophilic bacteria, pp. 87–103 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Lam, W.L., and Doolittle, W.F. 1989. Shuttle vector for the archaebacterium Halobacterium volcanii. Proc. Natl. Acad. Sci. USA 86: 5478–5482.

    Article  PubMed  CAS  Google Scholar 

  • Lam, W.L., and Doolittle, W.F. 1992. Mevinolin-resistant mutations identify a promoter and the genes for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme-A reductase in the archaebacterium Haloferax volcanii. J. Biol. Chem. 267: 5829–5834.

    PubMed  CAS  Google Scholar 

  • Llamas, I., Béjar, V., Argandoña, M., Quesada, E., and del Moral, A. 1999. Chemical mutagenesis of Halomonas eurihalina and selection of exopolysaccharide-deficient variants. Biotechnol. Lett. 21: 367–370.

    Article  CAS  Google Scholar 

  • Llamas, I., Argandoña, M., Quesada, E., and del Moral, A. 2000. Transposon mutagenesis in Halomonas eurihalina. Res. Microbiol. 151: 13–18.

    Article  PubMed  CAS  Google Scholar 

  • López-García, P., Abad, J.P., Smith, C., and Amils, R. 1992. Genomic organization of the halophilic archaeon Haloferax mediterranei: physical map of the chromosome. Nucleic Acids Res. 20: 2459–2464.

    Article  PubMed  Google Scholar 

  • López-García, P., Antón, P., Abad, J.P., and Amils, R. 1994. Halobacterial megaplasmids are negatively supercoiled. Mol. Microbiol. 11: 421–427.

    Article  PubMed  Google Scholar 

  • López-García, P., St Jean, A., Amils, R., and Charlebois, R.L. 1995. Genomic stability in the archaea Haloferax volcanii and Haloferax mediterranei. J. Bacteriol. 177: 1405–1408.

    PubMed  Google Scholar 

  • Louis, P., and Galinski, E.A. 1997. Identification of plasmids in the genus Marinococcus and complete nucleotide sequence of plasmid pPL1 from Marinococcus halophilus. Plasmid 38: 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen, K.R., Nicholson, D.E., Eubanks, D.C., and Fox, G.E. 1981. An archaebacterial 5S rRNA containing a large insertion sequence. Nature 293: 755–756.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., and Wasserfallen, A. 2001. Gene transfer systems and their applications in Archaea. Syst. Appl. Microbiol. 24: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Mankin, A.S., Zyrianova, I.M., Kagramanova, V.K., and Garrett, RA. 1992. Introducing mutations into the single copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc. Natl. Acad. Sci. USA 89: 6535–6539.

    Article  PubMed  CAS  Google Scholar 

  • McCready, S. 1996. The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium, and Haloferax volcanii. Mutation Res. 364: 25–32.

    Article  PubMed  Google Scholar 

  • Mellado, E., Asturias, J.A., Nieto, J.J., Timmis, K.N., and Ventosa, A. 1995a. Characterization of the basic replicon of pCM1, a narrow-host range plasmid from the moderate halophile Chromohalobacter marismortui. J. Bacteriol. 177: 3443–3450.

    PubMed  CAS  Google Scholar 

  • Mellado, E., Nieto, J.J., and Ventosa, A. 1995b. Construction of novel shuttle vectors for use between moderately halophilic bacteria and Escherichia coli. Plasmid 34: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, E., Garcia, M.T., Nieto, J.J., Kaplan, S., and Ventosa, A. 1997. Analysis of the genome of Vibrio costicola: pulsed-field gel electrophoretic analysis of genome size and plasmid-content. Syst. Appl. Microbiol. 20: 20–26.

    Google Scholar 

  • Mellado, E., García, M.T., Roldán, E., Nieto, J.J., and Ventosa, A. 1998. Analysis of the genome of the gram-negative moderate halophiles Halomonas and Chromohalobacter by using pulsed-field gel electrophoresis. Extremophiles 2: 435–438.

    Article  PubMed  CAS  Google Scholar 

  • Mevarech, M., and Werczberger, R. 1985. Genetic transfer in Halobacterium volcanii. J. Bacteriol. 162: 461–462.

    PubMed  CAS  Google Scholar 

  • Mijts, R.N., and Patel, B.K.C. 2001. Random sequence analysis of genomic DNA of an anaerobic, thermophilic, halophilic bacterium, Halothermothrix orenii. Extremophiles 5: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Mojica, F.J.M., Carbonnier, F., Juez, G., Rodriguez-Valera, F., and Forterre, P. 1994. Effects of salt and temperature on plasmid topology in the halophilic archaeon Haloferax volcanii. J. Bacteriol. 176: 4966–4973.

    PubMed  CAS  Google Scholar 

  • Mojica, F.J.M., Cisneros, E., Ferrer, C., Rodríguez-Valera, F., and Juez, G. 1997. Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii. J. Bacteriol. 179: 5471–5481.

    PubMed  CAS  Google Scholar 

  • Montero, C.G., Ventosa, A., Nieto, J.J., and Ruiz-Berraquero, F. 1991. Physical map of a 257 kilobase-pairs region from the genome of the archaebacterium Halococcus saccharolyticus. Curr. Microbiol. 23: 299–302.

    Article  CAS  Google Scholar 

  • Moore, R.L., and McCarthy, B.J. 1969. Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J. Bacteriol. 99: 248–254.

    PubMed  CAS  Google Scholar 

  • Morishita, H. 1978a. Control by episome on salt-resistance in bacteria, pp. 431–439 In: Noda, H. (Ed.), Origin of life. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Morishita, H. 1978b. Genetic regulation on salt resistance in halophilic bacteria, pp. 599–606 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Mortiz, A., Lankat-Buttgereit, B., Gross, H.J., and Goebel, W. 1985. Common structural features of the genes for two stable RNAs from Halobacterium halobium. Nucl. Acid Res. 13: 31–43.

    Article  Google Scholar 

  • Mullakhanbhai, M.F., and Larsen, H. 1975. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol. 104: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Ng, W.-L., and DasSarma, S. 1993. Minimal replication origin of the 200 kilobase Halobacterium plasmid pNRC100. J. Bacteriol. 175: 4584–4596.

    PubMed  CAS  Google Scholar 

  • Ng, W.L., Kothakota, S., and DasSarma, S. 1991. Structure of the gas vesicle plasmid in Halobacterium halobium inversion isomers, inverted repeats, and insertion sequences. J. Bacteriol. 173: 1958–1964.

    PubMed  CAS  Google Scholar 

  • Ng, W.V., Ciufo, S.A., Smith, T.M., Bumgarner, R.E., Baskin, D., Faust, J., Hall, B., Loretz, C., Seto, J., Slagel, J., Hood, L., and DasSarma, S. 1998. Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res. 8: 1131–1141.

    PubMed  CAS  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenberger, T.A., Peck, R.F., Pohlschroder, M., Spudich, J.L., Jong, K.-H., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., and DasSarma, S. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 12176–12181.

    Article  PubMed  CAS  Google Scholar 

  • Nieto, J.J., Fernandez-Castillo, R., Garcia, M.T., Mellado, E., and Ventosa, A. 1993. Survey of antimicrobial susceptibility of moderately halophilic eubacteria and extremely halophilic aerobic archaeobacteria: utilization of antimicrobial resistance as a genetic marker. Syst. Appl. Microbiol. 16: 352–360.

    CAS  Google Scholar 

  • Nieuwlandt, D.T., and Daniels, C.J. 1990. An expression vector for the archaebacterium Haloferax volcanii. J. Bacteriol. 172: 7104–7110.

    PubMed  CAS  Google Scholar 

  • Nomura, S., and Harada, Y. 1998. Functional expression of green fluorescent protein derivatives in Halobacterium salinarum. FEMS Microbiol. Lett. 167: 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Nuttall, S.D., Deutschel, S.E., Irving, R.A., and Serrano-Gomicia, J.A. 2000. The ShBle resistance determinant from Streptoalloteichus hindustanus is expressed in Haloferax volcanii and confers resistance to bleomycin. Biochem. J. 346: 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A. 1996. Sensitivity of selected members of the family Halobacteriaceae to quinolone antimicrobial activity. Arch. Microbiol. 165: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A. 2001. The order Halobacteriales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 3rd. ed. Springer-Verlag, New York (electronic publication).

    Google Scholar 

  • Ortenberg, R., Tchelet, R., and Mevarech, M. 1999. A model for the genetic exchange system of the extremely halophilic archaeon Haloferax volcanii, pp. 331–338 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Palmer, J.R., and Daniels, C.J. 1994. A transcriptional regulator for in vivo promoter analysis in the archaeon Haloferax volcanii. Appl. Environ. Microbiol. 60: 3867–3869.

    PubMed  CAS  Google Scholar 

  • Patenge, N., Haase, A., Bolhuis, H., and Oesterhelt, D. 2000. The gene for a halophilic β-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analyses in Halobacterium salinarum. Mol. Microbiol. 36: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, N.H., and Pauling, C. 1985. Evidence for two restriction-modification systems in Halobacterium cutirubrum. J. Bacteriol. 163: 783–784.

    PubMed  CAS  Google Scholar 

  • Peck, R.F., DasSarma, S., and Krebs, M.P. 2000. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. Microbiol. 35: 667–676.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, F. 1986. Insertion elements and genome organization of Halobacterium halobium. Syst. Appl. Microbiol. 7: 36–40.

    CAS  Google Scholar 

  • Pfeifer, F. 1988. Genetics of halobacteria, pp. 105–133 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria, Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Pfeifer, F., and Betlach, M. 1985. Genome organization in Halobacterium halobium. A 70 kb island of more (A + T) rich DNA in the chromosome. Mol. Gen. Genet. 98: 449–455.

    Article  Google Scholar 

  • Pfeifer, F., Weidinger, G., and Goebel, W. 1981a. Characterization of plasmids in halobacteria. J. Bacteriol. 145: 369–374.

    PubMed  CAS  Google Scholar 

  • Pfeifer, F., Weidinger, G., and Goebel, W. 1981b. Genetic variability in Halobacterium halobium. J. Bacteriol. 145: 375–381.

    PubMed  CAS  Google Scholar 

  • Pfeifer, F., Offner, S., Krüger, K., Ghahraman, P., and Englert, C. 1994. Transformation of halophilic Archaea and investigation of gas vesicle synthesis. Syst. Appl. Microbiol. 16: 569–577.

    CAS  Google Scholar 

  • Pfeifer, F., Kruger, K., Röder, R., Mayr, A., Ziesche, S., and Offner, S. 1997. Gas vesicle formation in halophilic Archaea. Arch. Microbiol. 167: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Rosenshine, I., and Mevarech, M. 1989. Isolation and partial characterization of plasmids found in three Halobacterium volcanii isolates. Can. J. Microbiol. 35: 92–95.

    Article  PubMed  CAS  Google Scholar 

  • Rosenshine, I., and Mevarech, M. 1991. The kinetic of the genetic exchange process in Halobacterium volcanii mating, pp. 265–270 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Rosenshine, I., Zussman, T., Werczberger, R., and Mevarech, M. 1987. Amplification of specific DNA sequences correlates with resistance of the archaebacterium Halobacterium volcanii to the dihydrofolate reductase inhibitors trimethoprim and methotrexate. Mol. Gen. Genet. 208: 518–522.

    Article  CAS  Google Scholar 

  • Rosenshine, I., Tchelet, R., and Mevarech, M. 1989. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245: 1387–1389.

    Article  PubMed  CAS  Google Scholar 

  • Sapienza, C., and Doolittle, W.F. 1982. Unusual physical organization of the Halobacterium genome. Nature 295: 384–389.

    Article  PubMed  CAS  Google Scholar 

  • Schalkwyk, L.C. 1993. Halobacterial genes and genomes, pp. 467–496 In: Kates, M., Kushner, D.J., and Matheson, A.T. (Eds.), The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Schinzel, R., and Burger, K.J. 1984. Sensitivity of halobacteria to aphidicolin, an inhibitor of eukaryotic α-type DNA polymerases. FEMS Microbiol. Lett. 25: 187–190.

    CAS  Google Scholar 

  • Shahmohammadi, H.-R., Asgarani, E., Terato, H., Ide, H., and Yamamoto, O. 1997. Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius. J. Radiat. Res. 38: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Shahmohammadi, H.-R., Asgarani, E., Terato, H., Saito, T., Ohyama, Y., Gekko, K., Yamamoto, O., and Ide, H. 1998. Protective roles of bacterioruberin and intracellular KC1 in the resistance of Halobacterium salinarium against DNA-damaging agents. J. Radiat. Res. 39: 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, N., Hepburn, D., and Fitt, P.S. 1984. Photoreactivation in pigmented extreme halophiles. Biochim. Biophys. Acta 799: 135–142.

    PubMed  CAS  Google Scholar 

  • Simon, R.D. 1978. Halobacterium strain 5 contains a plasmid with is correlated with the presence of gas vacuoles. Nature 273: 314–317.

    Article  PubMed  CAS  Google Scholar 

  • Sioud, M., Possot, O., Elie, C., Sibold, L., and Forterre, P. 1988. Coumarin and quinolone action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J. Bacteriol. 170: 946–953.

    PubMed  CAS  Google Scholar 

  • Soppa, J. 1994. Compilation of halobacterial protein coding genes, the halobacterial codon usage table and its use. Syst. Appl. Microbiol. 16: 725–733.

    CAS  Google Scholar 

  • Soppa, J. 1998. Optimization of the 5-bromo-2′-deoxyuridine selection and its application for the isolation of nitrate respiration-deficient mutants of Haloferax volcanii. J. Microbiol. Meth. 34: 41–48.

    Article  CAS  Google Scholar 

  • Soppa, J., and Oesterhelt, D. 1989a. Bacteriorhodopsin mutants of Halobacterium sp. GRB: 1. The 5-bromo-2′-deoxyuridine selection as a method to isolate point mutants in halobacteria. J. Biol. Chem. 264: 13043–13048.

    PubMed  CAS  Google Scholar 

  • Soppa, J., and Oesterhelt, D. 1989b. Halobacterium sp. GRB — a species to work with? Can J. Microbiol. 35: 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, K.R., and Schreier, H.J. 1999. Gene transfer systems for the Archaea. Trends Microbiol. 7: 212–219.

    Article  PubMed  CAS  Google Scholar 

  • St Jean, A., Trieselman, B.A., and Charlebois, R.L. 1994. Physical map and set of overlapping cosmid clones represent the genome of the archaeon Halobacterium sp. GRB. Nucleic Acids Res. 22: 1476–1483.

    Article  PubMed  CAS  Google Scholar 

  • Tan, G.T., Deblasio, A., and Mankin, A.S. 1996. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. J. Mol. Biol. 261: 222–230.

    Article  PubMed  CAS  Google Scholar 

  • Tchelet, R., and Mevarech, M. 1994. Interspecies genetic transfer in halophilic archaebacteria. Syst. Appl. Microbiol. 16: 578–581.

    CAS  Google Scholar 

  • Tegos, G., Vargas, C., Vartholomatos, G., Perysinakis, A., Nieto, J.J., Ventosa, A., and Drainas, C. 1997. Identification of a promoter region on the Halomonas elongata cryptic plasmid pHE1 employing the inaZ reporter gene of Pseudomonas syringae. FEMS Microbiol. Lett. 154: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D.K., Palmer, J.R., and Daniels, C.J. 1999. Expression and heat-responsive regulation of a TFIIB homologue from the archaeon Haloferax volcanii. Mol. Microbiol. 33: 1081–1092.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, C., Fernández-Castillo, R., Cánovas, D., Ventosa, A., and Nieto, J.J. 1995. Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol. Gen. Genet. 246: 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, C., Coronado, M.J., Ventosa, A., and Nieto, J.J. 1997. Host range, stability and compatibility of broad host-range-plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intrageneric and intergeneric conjugation in moderate halophiles. Syst. Appl. Microbiol. 20: 173–181.

    Google Scholar 

  • Vargas, C., Tegos, G., Drainas, C., Ventosa, A., and Nieto, J.J. 1999a. Analysis of the replication region of the cryptic plasmid pHE1 from the moderate halophile Halamonas elongata. Mol. Gen. Genet. 261: 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, C., Tegos, G., Vartholomatos, G., Drainas, C., Ventosa, A., and Nieto, J.J. 1999b. Genetic organization of the mobilization region of the plasmid pHE1 from Halomonas elongata. Syst. Appl. Microbiol. 22: 520–529.

    PubMed  CAS  Google Scholar 

  • Ventosa, A., Fernández-Castíllo, R., Vargas, C., Mellado, E., García, M.T., and Nieto, J.J. 1994. Isolation and characterization of new plasmids from moderately halophilic eubacteria: developing of cloning vectors, pp. 271–274 In: Alberghina, L., Frontali, L, and Sensi, P. (Eds.). Proceedings of the 6 th European congress on biotechnology. Elsevier, Amsterdam.

    Google Scholar 

  • Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    PubMed  CAS  Google Scholar 

  • Vreeland, R.H. 1992. The family Halomonadaceae, pp. 3181–3188 In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 2nd ed., Vol. IV. Springer-Verlag, New York.

    Google Scholar 

  • Weidinger, G., Klotz, G., and Goebel, W. 1979. A large plasmid from Halobacterium halobium carrying genetic information for gas vacuole formation. Plasmid 2: 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Wendoloski, D., Ferrer, C., and Dyall-Smith, M.L. 2001. A new simvastatin (mevinolin)-resistance marker from Haloarcula hispanica and a new Haloferax volcanii strain cured of plasmid pHV2. Microbiology UK 147: 959–964.

    CAS  Google Scholar 

  • Yang, C.-F., and DasSarma, S. 1990. Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor. J. Bacteriol. 172: 4118–4123.

    PubMed  CAS  Google Scholar 

  • Zibat, A. 2001. Efficient transformation of Halobacterium salinarum by a “freeze and thaw” technique. Biotechniques 31: 1010–1012.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Genetics and Genomics of Halophilic Archaea and Bacteria . In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics