Skip to main content

On Quantum Chemistry Code Adaptation for RSC PetaStream Architecture

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9137))

Included in the following conference series:

Abstract

Molecular simulations with quantum chemistry methods consume a large portion of CPU cycles in modern high-performance computing centers. Evolution of modern processors and HPC architectures necessitates adaptation of software to new hardware generations. The present work concentrates on the optimization of the widely used GAMESS code to Intel Xeon Phi architecture and recently devised RSC PetaStream platform. Since improvement in parallelization is required, the most frequently used Hartree-Fock and DFT methods are explored for additional parallelization options. The Xeon Phi requires vectorization that is important for electron-repulsion integrals (ERI) calculations to achieve good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwins, R.: Intel unveils many-core Knights platform for HPC. http://www.zdnet.com/article/intel-unveils-many-core-knights-platform-for-hpc/ (2010)

  2. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., et al.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  3. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later. In: Dykstra, C., Frenking, G., Kim, K., Scuseria, G. (eds.) Theory And Applications Of Computational Chemistry: The First Forty Years, pp. 1167–1189. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  4. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kaufmann Publishers, San Francisco (2013)

    Google Scholar 

  5. Anthony, S.: Intel unveils 72-core x86 Knights Landing CPU for exascale supercomputing. http://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing (2013)

  6. Semin, A., Druzhinin, E., Mironov, V., Shmelev, A., Moskovsky, A.: The performance characterization of the rsc petastream module. In: 29th International Conference (ISC 2014), Leipzig, Germany, pp. 420–429 (2014)

    Google Scholar 

  7. Schlegel, H.B., Frisch, M.J.: Computational Bottlenecks in Molecular Orbital Calculations. Theor. Comput. Model. Org. Chem. 339, 5–33 (1991)

    Google Scholar 

  8. Reza Ahmadi, G., Almlöf, J.: The Coulomb operator in a Gaussian product basis. Chem. Phys. Lett. 246, 364–370 (1995)

    Article  Google Scholar 

  9. McMurchie, L.E., Davidson, E.R.: One- and two-electron integrals over cartesian gaussian functions. J. Comput. Phys. 26, 218–231 (1978)

    Article  Google Scholar 

  10. Obara, S., Saika, A.: Efficient recursive computation of molecular integrals over Cartesian Gaussian functions. J. Chem. Phys. 84, 3963 (1986)

    Article  Google Scholar 

  11. Rys, J., Dupuis, M., King, H.F.: Computation of electron repulsion integrals using the rys quadrature method. J. Comput. Chem. 4, 154–157 (1983)

    Article  Google Scholar 

  12. Foster, I.T., Tilson, J.L., Wagner, A.F., Shepard, R.L., Harrison, R.J., et al.: Toward high-performance computational chemistry: i. scalable fock matrix construction algorithms. J. Comput. Chem. 17, 109–123 (1996)

    Article  Google Scholar 

  13. Ishimura, K., Kuramoto, K., Ikuta, Y., Hyodo, S.: MPI/OpenMP hybrid parallel algorithm for hartree − fock calculations. J. Chem. Theory Comput. 6, 1075–1080 (2010)

    Article  Google Scholar 

  14. Nieplocha, J.: Advances, applications and performance of the global arrays shared memory programming toolkit. Int. J. High Perform. Comput. Appl. 20, 203–231 (2006)

    Article  Google Scholar 

  15. Alexeev, Y., Kendall, R.A., Gordon, M.S.: The distributed data SCF. Comput. Phys. Commun. 143, 69–82 (2002)

    Article  MATH  Google Scholar 

  16. Fletcher, G.D., Schmidt, M.W., Bode, B.M., Gordon, M.S.: Distributed data interface in GAMESS. Comput. Phys. Commun. 128, 190–200 (2000)

    Article  MATH  Google Scholar 

  17. Sengottaiyan, S., Liu, F., Sosonkina, M.: A GPU support for large scale quantum chemistry applications. In: The 2012 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2012), Las Vegas, Nevada, USA (2012)

    Google Scholar 

  18. Ufimtsev, I.S., Martínez, T.J.: Quantum chemistry on graphical processing units. 1. strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4, 222–231 (2008)

    Article  Google Scholar 

  19. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 2. direct self-consistent-field implementation. J. Chem. Theory Comput. 5, 1004–1015 (2009)

    Article  Google Scholar 

  20. Aprà, E., Klemm, M., Kowalski, K.: Efficient implementation of many-body quantum chemical methods on the intel® xeon phi™ coprocessor. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and AnalysisPiscataway, NJ, USA, pp. 674–684. IEEE Press (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Intel Parallel Compute Center program. We thank Georg Zitzlsberg (Intel Corp.) and Klaus-Dieter Oertel (Intel Corp.) for valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Moskovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mironov, V., Khrenova, M., Moskovsky, A. (2015). On Quantum Chemistry Code Adaptation for RSC PetaStream Architecture. In: Kunkel, J., Ludwig, T. (eds) High Performance Computing. ISC High Performance 2015. Lecture Notes in Computer Science(), vol 9137. Springer, Cham. https://doi.org/10.1007/978-3-319-20119-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20119-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20118-4

  • Online ISBN: 978-3-319-20119-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics